194 research outputs found

    Current-induced magnetization reversal in a (Ga,Mn)As-based magnetic tunnel junction

    Full text link
    We report current-induced magnetization reversal in a ferromagnetic semiconductor-based magnetic tunnel junction (Ga,Mn)As/AlAs/(Ga,Mn)As prepared by molecular beam epitaxy on a p-GaAs(001) substrate. A change in magneto-resistance that is asymmetric with respect to the current direction is found with the excitation current of 10^6 A/cm^2. Contributions of both unpolarized and spin-polarized components are examined, and we conclude that the partial magnetization reversal occurs in the (Ga,Mn)As layer of smaller magnetization with the spin-polarized tunneling current of 10^5 A/cm^2.Comment: 13 pages, 3 figure

    Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration

    Full text link
    We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Electrical control of Kondo effect and superconducting transport in a side-gated InAs quantum dot Josephson junction

    Full text link
    We measure the non-dissipative supercurrent in a single InAs self-assembled quantum dot (QD) coupled to superconducting leads. The QD occupation is both tuned by a back-gate electrode and lateral side-gate. The geometry of the side-gate allows tuning of the QD-lead tunnel coupling in a region of constant electron number with appropriate orbital state. Using the side-gate effect we study the competition between Kondo correlations and superconducting pairing on the QD, observing a decrease in the supercurrent when the Kondo temperature is reduced below the superconducting energy gap in qualitative agreement with theoretical predictions

    Kondo Universal Scaling for a Quantum Dot Coupled to Superconducting Leads

    Full text link
    We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Due to Kondo enhancement of Andreev reflections the zero-bias anomaly develops sidepeaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T_K we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/kT_K as the only relevant energy scale, providing experimental evidence for universal scaling in this system.Comment: 4 pages, 3 figure

    Tuning the electrically evaluated electron Lande g factor in GaAs quantum dots and quantum wells of different well widths

    Full text link
    We evaluate the Lande g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Lande electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magneto-transport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Lande electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g-factor engineering QDs

    Active beating of a reconstituted synthetic minimal axoneme

    Get PDF
    Propelling microorganisms through fluids and moving fluids along cellular surfaces are essential biological functions accomplished by long, thin structures called motile cilia and flagella, whose regular, oscillatory beating breaks the time-reversal symmetry required for transport. Although top-down experimental approaches and theoretical models have allowed us to broadly characterize such organelles and propose mechanisms underlying their complex dynamics, constructing minimal systems capable of mimicking ciliary beating and identifying the role of each component remains a challenge. Here we report the bottom-up assembly of a minimal synthetic axoneme, which we call a synthoneme, using biological building blocks from natural organisms, namely pairs of microtubules and cooperatively associated axonemal dynein motors. We show that upon provision of energy by ATP, microtubules undergo rhythmic bending by cyclic association-dissociation of dyneins. Our simple and unique beating minimal synthoneme represents a self-organized nanoscale biomolecular machine that can also help understand the mechanisms underlying ciliary beating
    • …
    corecore