17 research outputs found

    Carcinoma Arising from Brunner's Gland in the Duodenum after 17 Years of Observation – A Case Report and Literature Review

    Get PDF
    A 60-year-old man presented with melena and hematemesis in 1984. Esophagogastroduodenoscopy (EGD) detected a small protruding lesion in the duodenal bulb, which was diagnosed as Brunner's adenoma. No significant change was detected in subsequent annual EGD and biopsies for 10 years, after which the patient was not observed for 7 years. The patient presented with melena again in 2001. The lesion had changed shape to become a 10 mm sessile tumor with a central depression, and following a biopsy was diagnosed as an adenocarcinoma. The patient underwent partial resection of the duodenum. Histopathological assessment showed acidophilic cells with swollen nuclei, and clear cells forming a tubular or papillary tubule in the mucosal lamina propria and submucosal layer. The tumor cells stained positive for lysozyme, indicating that they arose from Brunner's gland. The patient showed no sign of recurrence and was disease-free for more than 34 months after surgery. The patient died of pneumonia. This is an extremely rare case of primary duodenal carcinoma arising from Brunner's gland in a patient observed for 17 years

    The benefits of very low earth orbit for earth observation missions

    Get PDF
    Very low Earth orbits (VLEO), typically classified as orbits below approximately 450 km in altitude, have the potential to provide significant benefits to spacecraft over those that operate in higher altitude orbits. This paper provides a comprehensive review and analysis of these benefits to spacecraft operations in VLEO, with parametric investigation of those which apply specifically to Earth observation missions. The most significant benefit for optical imaging systems is that a reduction in orbital altitude improves spatial resolution for a similar payload specification. Alternatively mass and volume savings can be made whilst maintaining a given performance. Similarly, for radar and lidar systems, the signal-to-noise ratio can be improved. Additional benefits include improved geospatial position accuracy, improvements in communications link-budgets, and greater launch vehicle insertion capability. The collision risk with orbital debris and radiation environment can be shown to be improved in lower altitude orbits, whilst compliance with IADC guidelines for spacecraft post-mission lifetime and deorbit is also assisted. Finally, VLEO offers opportunities to exploit novel atmosphere-breathing electric propulsion systems and aerodynamic attitude and orbit control methods. However, key challenges associated with our understanding of the lower thermosphere, aerodynamic drag, the requirement to provide a meaningful orbital lifetime whilst minimising spacecraft mass and complexity, and atomic oxygen erosion still require further research. Given the scope for significant commercial, societal, and environmental impact which can be realised with higher performing Earth observation platforms, renewed research efforts to address the challenges associated with VLEO operations are required

    Intake design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP) that collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer times. IRS is developing, within the H2020 DISCOVERER project, an intake and a thruster for an ABEP system. The article describes the design and simulation of the intake, optimized to feed the radio frequency (RF) Helicon-based plasma thruster developed at IRS. The article deals in particular with the design of intakes based on diffuse and specular reflecting materials, which are analysed by the PICLas DSMC-PIC tool. Orbital altitudes and the respective species based on the NRLMSISE-00 model (O, , , He, Ar, H, N) are investigated for several concepts based on fully diffuse and specular scattering, including hybrid designs. The major focus has been on the intake efficiency defined as , with the incoming particle flux, and the one collected by the intake. Finally, two concepts are selected and presented providing the best expected performance for the operation with the selected thruster. The first one is based on fully diffuse accommodation yielding to and the second one based on fully specular accommodation yielding to . Finally, also the influence of misalignment with the flow is analysed, highlighting a strong dependence of in the diffuse-based intake while, for the specular-based intake, this is much lower finally leading to a more resilient design while also relaxing requirements of pointing accuracy for the spacecraft

    A review of gas-surface interaction models for orbital aerodynamics applications

    Get PDF
    Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications

    Intake Design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend the lifetime of such missions, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP) that collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planetary body with atmosphere, enabling new missions at low altitude ranges for longer times. IRS is developing, within the H2020 DISCOVERER project, an intake and a thruster for an ABEP system. The article describes the design and simulation of the intake, optimized to feed the radio frequency (RF) Helicon-based plasma thruster developed at IRS. The article deals in particular with the design of intakes based on diffuse and specular reflecting materials, which are analysed by the PICLas DSMC-PIC tool. Orbital altitudes h=150−250h=150-250 km and the respective species based on the NRLMSISE-00 model (O, N2N_2, O2O_2, He, Ar, H, N) are investigated for several concepts based on fully diffuse and specular scattering, including hybrid designs. The major focus has been on the intake efficiency defined as ηc=N˙out/N˙in\eta_c=\dot{N}_{out}/\dot{N}_{in}, with N˙in\dot{N}_{in} the incoming particle flux, and N˙out\dot{N}_{out} the one collected by the intake. Finally, two concepts are selected and presented providing the best expected performance for the operation with the selected thruster. The first one is based on fully diffuse accommodation yielding to ηc<0.46\eta_c<0.46 and the second one based un fully specular accommodation yielding to ηc<0.94\eta_c<0.94. Finally, also the influence of misalignment with the flow is analysed, highlighting a strong dependence of ηc\eta_c in the diffuse-based intake while, ...Comment: Accepted Versio

    Inductive Plasma Thruster (IPT) design for an Atmosphere-Breathing Electric Propulsion System (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft, therefore an efficient propulsion system is required to extend the mission lifetime. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to use as propellant for an electric thruster. This would minimize the requirement of limited propellant availability. The system could be applied to any planet with atmosphere, enabling new mission at these altitude ranges for continuous orbiting. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such components are erosion source of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems (RIT and HET). IRS is developing within the DISCOVERER project an intake and a thruster for an ABEP system. This paper deals with the design and first operation of the inductive plasma thruster (IPT) developed at IRS. The paper describes its design aided by numerical tools such as HELIC and ADAMANT. Such a device is based on RF electrodeless discharge aided by externally applied static magnetic field. The IPT is composed by a movable injector, to variate the discharge channel length, and a movable electromagnet to variate position and intensity of the magnetic field. By changing these parameters along with a novel antenna design for electric propulsion, the aim is to achieve the highest efficiency for the ionization stage by enabling the formation of helicon-based discharge. Finally, the designed IPT is presented and the feature of the birdcage antenna highlighted

    RF Helicon-based Inductive Plasma Thruster (IPT) Design for an Atmosphere-Breathing Electric Propulsion system (ABEP)

    Get PDF
    Challenging space missions include those at very low altitudes, where the atmosphere is source of aerodynamic drag on the spacecraft. To extend such missions lifetime, an efficient propulsion system is required. One solution is Atmosphere-Breathing Electric Propulsion (ABEP). It collects atmospheric particles to be used as propellant for an electric thruster. The system would minimize the requirement of limited propellant availability and can also be applied to any planet with atmosphere, enabling new mission at low altitude ranges for longer times. Challenging is also the presence of reactive chemical species, such as atomic oxygen in Earth orbit. Such species cause erosion of (not only) propulsion system components, i.e. acceleration grids, electrodes, and discharge channels of conventional EP systems. IRS is developing within the DISCOVERER project, an intake and a thruster for an ABEP system. The paper describes the design and implementation of the RF helicon-based inductive plasma thruster (IPT). This paper deals in particular with the design and implementation of a novel antenna called the birdcage antenna, a device well known in magnetic resonance imaging (MRI), and also lately employed for helicon-wave based plasma sources in fusion research. This is aided by the numerical tool XFdtd®. The IPT is based on RF electrodeless operation aided by an externally applied static magnetic field. The IPT is composed by an antenna, a discharge channel, a movable injector, and a solenoid. By changing the operational parameters along with the novel antenna design, the aim is to minimize losses in the RF circuit, and accelerate a quasi-neutral plasma plume. This is also to be aided by the formation of helicon waves within the plasma that are to improve the overall efficiency and achieve higher exhaust velocities. Finally, the designed IPT with a particular focus on the birdcage antenna design procedure is presented
    corecore