1,223 research outputs found

    Large spin-orbit splitting and weakly-anisotropic superconductivity revealed with single-crystalline noncentrosymmetric CaIrSi3

    Full text link
    We report normal and superconducting properties of the Rashba-type noncentrosymmetric com- pound CaIrSi3, using single crystalline samples with nearly 100% superconducting volume fraction. The electronic density of states revealed by the hard x-ray photoemission spectroscopy can be well explained by the relativistic first-principle band calculation. This indicates that strong spin-orbit interaction indeed affects the electronic states of this compound. The obtained H - T phase diagram exhibits only approximately 10% anisotropy, indicating that the superconducting properties are almost three dimensional. Nevertheless, strongly anisotropic vortex pinning is observed.Comment: 8 pages, 6 figures, 1 table, accepted for publication in Phys. Rev.

    Theory of Ferromagnetic Superconductivity

    Full text link
    It is argued that the pairing symmetry realized in a ferromagnetic superconductor UGe2_2 must be a non-unitary triplet pairing. This particular state is free from the Pauli limitation and can survive under a huge internal molecular filed. To check our identification we examine its basic properties and several experiments are proposed. In particular, the external field is used to raise TcT_c by controlling the internal spontaneous dipole field.Comment: 4 pages, no figure

    KP solitons in shallow water

    Full text link
    The main purpose of the paper is to provide a survey of our recent studies on soliton solutions of the Kadomtsev-Petviashvili (KP) equation. The classification is based on the far-field patterns of the solutions which consist of a finite number of line-solitons. Each soliton solution is then defined by a point of the totally non-negative Grassmann variety which can be parametrized by a unique derangement of the symmetric group of permutations. Our study also includes certain numerical stability problems of those soliton solutions. Numerical simulations of the initial value problems indicate that certain class of initial waves asymptotically approach to these exact solutions of the KP equation. We then discuss an application of our theory to the Mach reflection problem in shallow water. This problem describes the resonant interaction of solitary waves appearing in the reflection of an obliquely incident wave onto a vertical wall, and it predicts an extra-ordinary four-fold amplification of the wave at the wall. There are several numerical studies confirming the prediction, but all indicate disagreements with the KP theory. Contrary to those previous numerical studies, we find that the KP theory actually provides an excellent model to describe the Mach reflection phenomena when the higher order corrections are included to the quasi-two dimensional approximation. We also present laboratory experiments of the Mach reflection recently carried out by Yeh and his colleagues, and show how precisely the KP theory predicts this wave behavior.Comment: 50 pages, 25 figure

    Chapter VII: Future Prediction

    Get PDF
    How change in rainfall in Mongolia after global warming ......103Grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem ......104Root response to grazing of a Mongolian grassland ecosystem ......105Estimation and forecast of carbon/water cycles in a Mongolian Ecosystem ......10

    Influence of intermartensitic transitions on transport properties of Ni2.16Mn0.84Ga alloy

    Full text link
    Magnetic, transport, and x-ray diffraction measurements of ferromagnetic shape memory alloy Ni2.16_{2.16}Mn0.84_{0.84}Ga revealed that this alloy undergoes an intermartensitic transition upon cooling, whereas no such a transition is observed upon subsequent heating. The difference in the modulation of the martensite forming upon cooling from the high-temperature austenitic state [5-layered (5M) martensite], and the martensite forming upon the intermartensitic transition [7-layered (7M) martensite] strongly affects the magnetic and transport properties of the alloy and results in a large thermal hysteresis of the resistivity ρ\rho and magnetization MM. The intermartensitic transition has an especially marked influence on the transport properties, as is evident from a large difference in the resistivity of the 5M and 7M martensite, (ρ5Mρ7M)/ρ5M15(\rho_{\mathrm{5M}} - \rho_{\mathrm{7M}})/\rho _{\mathrm{5M}} \approx 15%, which is larger than the jump of resistivity at the martensitic transition from the cubic austenitic phase to the monoclinic 5M martensitic phase. We assume that this significant difference in ρ\rho between the martensitic phases is accounted for by nesting features of the Fermi surface. It is also suggested that the nesting hypothesis can explain the uncommon behavior of the resistivity at the martensitic transition, observed in stoichiometric and near-stoichiometric Ni-Mn-Ga alloys.Comment: 7 pages, 6 figures, REVTEX

    SALL4 Expression in Gonocytes and Spermatogonial Clones of Postnatal Mouse Testes

    Get PDF
    The spermatogenic lineage is established after birth when gonocytes migrate to the basement membrane of seminiferous tubules and give rise to spermatogonial stem cells (SSC). In adults, SSCs reside within the population of undifferentiated spermatogonia (Aundiff) that expands clonally from single cells (Asingle) to form pairs (Apaired) and chains of 4, 8 and 16 Aaligned spermatogonia. Although stem cell activity is thought to reside in the population of Asingle spermatogonia, new research suggests that clone size alone does not define the stem cell pool. The mechanisms that regulate self-renewal and differentiation fate decisions are poorly understood due to limited availability of experimental tools that distinguish the products of those fate decisions. The pluripotency factor SALL4 (sal-like protein 4) is implicated in stem cell maintenance and patterning in many organs during embryonic development, but expression becomes restricted to the gonads after birth. We analyzed the expression of SALL4 in the mouse testis during the first weeks after birth and in adult seminiferous tubules. In newborn mice, the isoform SALL4B is expressed in quiescent gonocytes at postnatal day 0 (PND0) and SALL4A is upregulated at PND7 when gonocytes have colonized the basement membrane and given rise to spermatogonia. During steady-state spermatogenesis in adult testes, SALL4 expression overlapped substantially with PLZF and LIN28 in Asingle, Apaired and Aaligned spermatogonia and therefore appears to be a marker of undifferentiated spermatogonia in mice. In contrast, co-expression of SALL4 with GFRα1 and cKIT identified distinct subpopulations of Aundiff in all clone sizes that might provide clues about SSC regulation. Collectively, these results indicate that 1) SALL4 isoforms are differentially expressed at the initiation of spermatogenesis, 2) SALL4 is expressed in undifferentiated spermatogonia in adult testes and 3) SALL4 co-staining with GFRα1 and cKIT reveals distinct subpopulations of Aundiff spermatogonia that merit further investigation. © 2013 Gassei, Orwig

    Persistence of Different Forms of Transient RNAi during Apoptosis in Mammalian Cells

    Get PDF
    Gene silencing by transient or stable RNA-interference (RNAi) is used for the study of apoptosis with an assumption that apoptotic events will not influence RNAi. However, we recently reported that stable RNAi, i.e., a permanent gene-knockdown mediated by shRNA-generating DNA vectors that are integrated in the genome, fails rapidly after induction of apoptosis due to caspase-3-mediated cleavage and inactivation of the endoribonuclease Dicer-1 that is required for conversion of shRNA to siRNA. Since apoptosis studies also increasingly employ transient RNAi models in which apoptosis is induced immediately after a gene is temporarily knocked down within a few days of transfection with RNAi-inducing agents, we examined the impact of apoptosis on various models of transient RNAi. We report here that unlike the stable RNAi, all forms of transient RNAi, whether Dicer-1-independent (by 21mer dsRNA) or Dicer-1-dependent (by 27mer dsRNA or shRNA-generating DNA vector), whether for an exogenous gene GFP or an endogenous gene poly(ADP-ribose) polymerase-1, do not fail for 2–3 days after onset of apoptosis. Our results reflect the differences in dynamics of achieving and maintaining RNAi during the early phase after transfection in the transient RNAi model and the late steady-state phase of gene-knockdown in stable RNAi model. Our results also sound a cautionary note that RNAi status should be frequently validated in the studies involving apoptosis and that while stable RNAi can be safely used for the study of early apoptotic events, transient RNAi is more suitable for the study of both early and late apoptotic events
    corecore