596 research outputs found

    Anderson transition in three-dimensional disordered systems with symplectic symmetry

    Full text link
    The Anderson transition in a 3D system with symplectic symmetry is investigated numerically. From a one-parameter scaling analysis the critical exponent ν\nu of the localization length is extracted and estimated to be ν=1.3±0.2\nu = 1.3 \pm 0.2. The level statistics at the critical point are also analyzed and shown to be scale independent. The form of the energy level spacing distribution P(s)P(s) at the critical point is found to be different from that for the orthogonal ensemble suggesting that the breaking of spin rotation symmetry is relevant at the critical point.Comment: 4 pages, revtex, to appear in Physical Review Letters. 3 figures available on request either by fax or normal mail from [email protected] or [email protected]

    A combinatorial approach to knot recognition

    Full text link
    This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition

    Critical Level Statistics in Two-dimensional Disordered Electron Systems

    Full text link
    The level statistics in the two dimensional disordered electron systems in magnetic fields (unitary ensemble) or in the presence of strong spin-orbit scattering (symplectic ensemble) are investigated at the Anderson transition points. The level spacing distribution functions P(s)P(s)'s are found to be independent of the system size or of the type of the potential distribution, suggesting the universality. They behave as s2s^2 in the small ss region in the former case, while s4s^4 rise is seen in the latter.Comment: LaTeX, to be published in J. Phys. Soc. Jpn. (Letter) Nov., Figures will be sent on reques

    A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres

    Full text link
    We construct an invariant J_M of integral homology spheres M with values in a completion \hat{Z[q]} of the polynomial ring Z[q] such that the evaluation at each root of unity \zeta gives the the SU(2) Witten-Reshetikhin-Turaev invariant \tau_\zeta(M) of M at \zeta. Thus J_M unifies all the SU(2) Witten-Reshetikhin-Turaev invariants of M. As a consequence, \tau_\zeta(M) is an algebraic integer. Moreover, it follows that \tau_\zeta(M) as a function on \zeta behaves like an ``analytic function'' defined on the set of roots of unity. That is, the \tau_\zeta(M) for all roots of unity are determined by a "Taylor expansion" at any root of unity, and also by the values at infinitely many roots of unity of prime power orders. In particular, \tau_\zeta(M) for all roots of unity are determined by the Ohtsuki series, which can be regarded as the Taylor expansion at q=1.Comment: 66 pages, 8 figure

    Complete controllability of quantum systems

    Get PDF
    Sufficient conditions for complete controllability of NN-level quantum systems subject to a single control pulse that addresses multiple allowed transitions concurrently are established. The results are applied in particular to Morse and harmonic-oscillator systems, as well as some systems with degenerate energy levels. Morse and harmonic oscillators serve as models for molecular bonds, and the standard control approach of using a sequence of frequency-selective pulses to address a single transition at a time is either not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio

    Conductance Distribution in Disordered Quantum Wires with a Perfectly Conducting Channel

    Full text link
    We study the conductance of phase-coherent disordered quantum wires focusing on the case in which the number of conducting channels is imbalanced between two propagating directions. If the number of channels in one direction is by one greater than that in the opposite direction, one perfectly conducting channel without backscattering is stabilized regardless of wire length. Consequently, the dimensionless conductance does not vanish but converges to unity in the long-wire limit, indicating the absence of Anderson localization. To observe the influence of a perfectly conducting channel, we numerically obtain the distribution of conductance in both cases with and without a perfectly conducting channel. We show that the characteristic form of the distribution is notably modified in the presence of a perfectly conducting channel.Comment: 7 pages, 16 figure
    corecore