596 research outputs found
Anderson transition in three-dimensional disordered systems with symplectic symmetry
The Anderson transition in a 3D system with symplectic symmetry is
investigated numerically. From a one-parameter scaling analysis the critical
exponent of the localization length is extracted and estimated to be . The level statistics at the critical point are also analyzed
and shown to be scale independent. The form of the energy level spacing
distribution at the critical point is found to be different from that
for the orthogonal ensemble suggesting that the breaking of spin rotation
symmetry is relevant at the critical point.Comment: 4 pages, revtex, to appear in Physical Review Letters. 3 figures
available on request either by fax or normal mail from
[email protected] or [email protected]
A combinatorial approach to knot recognition
This is a report on our ongoing research on a combinatorial approach to knot
recognition, using coloring of knots by certain algebraic objects called
quandles. The aim of the paper is to summarize the mathematical theory of knot
coloring in a compact, accessible manner, and to show how to use it for
computational purposes. In particular, we address how to determine colorability
of a knot, and propose to use SAT solving to search for colorings. The
computational complexity of the problem, both in theory and in our
implementation, is discussed. In the last part, we explain how coloring can be
utilized in knot recognition
Critical Level Statistics in Two-dimensional Disordered Electron Systems
The level statistics in the two dimensional disordered electron systems in
magnetic fields (unitary ensemble) or in the presence of strong spin-orbit
scattering (symplectic ensemble) are investigated at the Anderson transition
points. The level spacing distribution functions 's are found to be
independent of the system size or of the type of the potential distribution,
suggesting the universality. They behave as in the small region in
the former case, while rise is seen in the latter.Comment: LaTeX, to be published in J. Phys. Soc. Jpn. (Letter) Nov., Figures
will be sent on reques
A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres
We construct an invariant J_M of integral homology spheres M with values in a
completion \hat{Z[q]} of the polynomial ring Z[q] such that the evaluation at
each root of unity \zeta gives the the SU(2) Witten-Reshetikhin-Turaev
invariant \tau_\zeta(M) of M at \zeta. Thus J_M unifies all the SU(2)
Witten-Reshetikhin-Turaev invariants of M. As a consequence, \tau_\zeta(M) is
an algebraic integer. Moreover, it follows that \tau_\zeta(M) as a function on
\zeta behaves like an ``analytic function'' defined on the set of roots of
unity. That is, the \tau_\zeta(M) for all roots of unity are determined by a
"Taylor expansion" at any root of unity, and also by the values at infinitely
many roots of unity of prime power orders. In particular, \tau_\zeta(M) for all
roots of unity are determined by the Ohtsuki series, which can be regarded as
the Taylor expansion at q=1.Comment: 66 pages, 8 figure
Complete controllability of quantum systems
Sufficient conditions for complete controllability of -level quantum
systems subject to a single control pulse that addresses multiple allowed
transitions concurrently are established. The results are applied in particular
to Morse and harmonic-oscillator systems, as well as some systems with
degenerate energy levels. Morse and harmonic oscillators serve as models for
molecular bonds, and the standard control approach of using a sequence of
frequency-selective pulses to address a single transition at a time is either
not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio
Conductance Distribution in Disordered Quantum Wires with a Perfectly Conducting Channel
We study the conductance of phase-coherent disordered quantum wires focusing
on the case in which the number of conducting channels is imbalanced between
two propagating directions. If the number of channels in one direction is by
one greater than that in the opposite direction, one perfectly conducting
channel without backscattering is stabilized regardless of wire length.
Consequently, the dimensionless conductance does not vanish but converges to
unity in the long-wire limit, indicating the absence of Anderson localization.
To observe the influence of a perfectly conducting channel, we numerically
obtain the distribution of conductance in both cases with and without a
perfectly conducting channel. We show that the characteristic form of the
distribution is notably modified in the presence of a perfectly conducting
channel.Comment: 7 pages, 16 figure
- …