531 research outputs found

    Two-dimensional superconductivity at a Mott-Insulator/Band-Insulator interface: LaTiO3/SrTiO3

    Full text link
    Transition metal oxides display a great variety of quantum electronic behaviours where correlations often play an important role. The achievement of high quality epitaxial interfaces involving such materials gives a unique opportunity to engineer artificial structures where new electronic orders take place. One of the most striking result in this area is the recent observation of a two-dimensional electron gas at the interface between a strongly correlated Mott insulator LaTiO3 and a band insulator SrTiO3. The mechanism responsible for such a behaviour is still under debate. In particular, the influence of the nature of the insulator has to be clarified. Here we show that despite the expected electronic correlations, LaTiO3/SrTiO3 heterostructures undergo a superconducting transition at a critical temperature Tc=300 mK. We have found that the superconducting electron gas is confined over a typical thickness of 12 nm. We discuss the electronic properties of this system and review the possible scenarios

    Magnetically ordered state at correlated oxide interfaces: the role of random oxygen defects

    Full text link
    Using an effective one-band Hubbard model with disorder, we consider magnetic states of the correlated oxide interfaces, where effective hole self-doping and a magnetially ordered state emerge due to electronic and ionic reconstructions. By employing the coherent potential approximation, we analyze the effect of random oxygen vacancies on the two-dimensional magnetism. We find that the random vacancies enhance the ferromagnetically ordered state and stabilize a robust magnetization above a critical vacancy concentration of about c=0.1. In the strong-correlated regime, we also obtain a nonmonotonic increase of the magnetization upon an increase of vacancy concentration and a substantial increase of the magnetic moments, which can be realized at oxygen reduced high-Tc cuprate interfaces.Comment: 8 pages, 2 figures, submitted to J Supercond Novel Magnetism (ICSM12 conference contribution

    Systematic Control of Carrier Doping without Disorder at Interface of Oxide Heterostructures

    Full text link
    We propose a method to systematically control carrier densities at the interface of transition-metal oxide heterostructures without introducing disorders. By inserting non-polar layers sandwiched by polar layers, continuous carrier doping into the interface can be realized. This method enables us to control the total carrier densities per unit cell systematically up to high values of the order unity.Comment: 8 pages, 9 figure

    Oxide Heterostructures from a Realistic Many-Body Perspective

    Full text link
    Oxide heterostructures are a new class of materials by design, that open the possibility for engineering challenging electronic properties, in particular correlation effects beyond an effective single-particle description. This short review tries to highlight some of the demanding aspects and questions, motivated by the goal to describe the encountered physics from first principles. The state-of-the-art methodology to approach realistic many-body effects in strongly correlated oxides, the combination of density functional theory with dynamical mean-field theory, will be briefly introduced. Discussed examples deal with prominent Mott-band- and band-band-insulating type of oxide heterostructures, where different electronic characteristics may be stabilized within a single architectured oxide material.Comment: 19 pages, 9 figure

    Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO3_3/SrTiO3_3 Interfaces

    Get PDF
    A two dimensional electronic system with novel electronic properties forms at the interface between the insulators LaAlO3_3 and SrTiO3_3. Samples fabricated until now have been found to be either magnetic or superconducting, depending on growth conditions. We combine transport measurements with high-resolution magnetic torque magnetometry and report here evidence of magnetic ordering of the two-dimensional electron liquid at the interface. The magnetic ordering exists from well below the superconducting transition to up to 200 K, and is characterized by an in-plane magnetic moment. Our results suggest that there is either phase separation or coexistence between magnetic and superconducting states. The coexistence scenario would point to an unconventional superconducting phase in the ground state.Comment: 10 pages, 4 figure

    Excitations and spin correlations near the interface of two three-dimensional Heisenberg antiferromagnets

    Full text link
    Magnetic excitations and spin correlations near the interface of two spin-12\frac12 Heisenberg antiferromagnets are considered using the spin-wave approximation. When the interaction between boundary spins differs essentially from exchange constants inside the antiferromagnets, quasi-two-dimensional spin waves appear in the near-boundary region. They eject bulk magnons from this region, thereby dividing the antiferromagnets into areas with different magnetic excitations. The decreased dimensionality of the near-boundary modes leads to amplified nearest-neighbor spin correlations in the interface area.Comment: 6 pages, 5 figure

    Disturbed Ca2+ Homeostasis in the Gerbil Hippocampus Following Brief Transient Ischemia

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付
    corecore