3,693 research outputs found

    AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations

    Get PDF
    This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event

    Evidence for Strong Breit Interaction in Dielectronic Recombination of Highly Charged Heavy Ions

    Get PDF
    Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s22p1/2]1

    Photometric Observations of Star Formation Activity in Early Type Spirals

    Full text link
    We observationally study the current star formation activities of early type spiral galaxies. We construct a complete sample of 15 early type spirals having far-infrared (FIR) to optical B band luminosity ratios, L(FIR)/L(B), larger than the average of the type, and make their CCD imaging of the R and H-alpha bands. The equivalent widths of H-alpha emission increase with increasing L(FIR)/L(B), indicating that L(FIR)/L(B) can be an indicator of star formation for such early type spirals with star formation activities higher than the average. For all of the observed early type spirals, the extended HII regions exist at the central regions with some asymmetric features. H-alpha emission is more concentrated to the galactic center than the R band light, and the degree of the concentration increases with the star formation activity. We also analyze the relation between the star formation activities and the existence of companion galaxies in the sample galaxies and other bright early type spirals. No correlation is found and this suggests that the interaction is not responsible for all of the star formation activities of early type spirals.Comment: LaTex, 23 pages (2 tables included), plus 9 Postscript figures & 1 table. To be published in AJ (November issue

    Ruminal Disappearance and Passage Rates in Fresh Nezasa Dwarf Bamboo Growing in Japanese Native Pasture

    Get PDF
    Nezasa dwarf bamboo (Pleioblastus chino makino) is one of major native forages for grazing in Japan. However its nutritional utilisation in the rumen has been little studied. The object of this research was to measure ruminal disappearance and passage rates in fresh Nezasa dwarf bamboo compared with improved grass

    Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals

    Full text link
    The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as (N-th order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions. Such schemes are however either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT, which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the Projector Augmented Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely SrVO3 and beta-NiS (a charge-transfer material), including ligand states in the basis-set. The results are compared to calculations done with Maximally Localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.Comment: 15 pages, 17 figure

    Koszul binomial edge ideals

    Full text link
    It is shown that if the binomial edge ideal of a graph GG defines a Koszul algebra, then GG must be chordal and claw free. A converse of this statement is proved for a class of chordal and claw free graphs
    corecore