13 research outputs found

    Petrology and reflectance spectroscopy of lunar meteorite Yamato 981031: Implications for the source region of the meteorite and remote-sensing spectroscopy

    Get PDF
    Combined mineralogy and reflectance spectroscopy of lunar meteorite Yamato (Y) 981031 were investigated to determine its possible source region. Mineralogical observations indicate that Y981031 is a mixture of mafic mare and feldspathic highland components. Y981031 has abundant mineral fragments and lithic clasts in a comminuted matrix. Although the most of the lithic clasts are pyroxene-dominant basaltic clasts, some plagioclase-rich lithic fragments are also present. High- and low-Ca pyroxene grains with wide compositional variations are included in the breccia. Since high-Ca pyroxene (Wo43En40Fs17 to Wo29En23Fs48) and a part of Fe-rich low-Ca pyroxene are found in pyroxene-dominant basaltic clasts, they were derived from mare materials. In contrast, abundant Mg-rich low-Ca pyroxene (approximately Wo10En63Fs27) is of highland origin because their chemical compositions resemble highland low-Ca pyroxene. Fusion crust glass compositions (TiO2=0.50-0.77wt and FeO=11.7-15.4wt) suggest that source mafic components of Y981031 have very low-Ti (VLT) affinity. In comparison with global remote-sensing data, the above TiO2 and FeO concentrations resemble those of the VLT affinity in Mare Frigoris and adjacent maria. Thus, we propose that Y981031 was launched from this area. Modified gaussian model analysis of reflectance spectrum shows absorption features of high-Ca pyroxene (mare-origin) and Mg-rich low-Ca pyroxene (highland-origin), and enables us to observe separately mineralogical characteristics of each end member of Y981031 as the soil mixture

    Establishing the Japan-Store House of Animal Radiobiology Experiments (J-SHARE), a large-scale necropsy and histopathology archive providing international access to important radiobiology data

    No full text
    Purpose: Projects evaluating the effects of radiation, within the National Institutes of Quantum and Radiological Science and Technology (QST), National Institute of Radiological Sciences (NIRS), have focused on risk analyses for life shortening and cancer prevalence using laboratory animals. Genetic and epigenetic alterations in radiation-induced tumors have been also analyzed, with the aim of better understanding mechanisms of radiation carcinogenesis. As well as the economic and practical limitations of repeating such large-scale experiments, ethical considerations make it vital that we store and share the pathological data and samples of the animal experiments for future use. We are now constructing such an archive called the Japan-Storehouse of Animal Radiobiology Experiments (J-SHARE).Methods: J-SHARE records include information such as detailed experimental protocols, necropsy records and photographs of organs at necropsy. For each animal organs and tumor tissues are dissected, and parts are stored as frozen samples at -80 ˚C. Samples fixed with formalin are also embedded in paraffin blocks for histopathological analyses. Digital copies of stained tissues are being systematically saved using a virtual slide system linked to original records by barcodes. Embedded and frozen tissues are available for molecular analysis.Conclusion: Similar archive systems for radiation biology have been also under construction in the USA and Europe, the Northwestern University Radiation Archive (NURA), and STORE at the BfS, respectively. The J-SHARE will be linked with the sister-archives and made available for collaborative research to institutions and universities all over the world

    Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12185-016-2054-7Iron overload remains a concern in myelodysplastic syndrome (MDS) patients. Iron chelation therapy (ICT) thus plays an integral role in the management of these patients. Moreover, ICT has been shown to prolong leukemia-free survival in MDS patients; however, the mechanisms responsible for this effect are unclear. Iron is a key molecule for regulating cytosolic aconitase 1 (ACO1). Additionally, the mutation of isocitrate dehydrogenase (IDH), the enzyme downstream of ACO1 in the TCA cycle, is associated with epigenetic abnormalities secondary to 2-hydroxyglutarate (2-HG) and DNA methylation. However, epigenetic abnormalities observed in many MDS patients occur without IDH mutation. We hypothesized that iron itself activates the ACO1-IDH pathway, which may increase 2-HG and DNA methylation, and eventually contribute to leukemogenesis without IDH mutation. Using whole RNA sequencing of bone marrow cells in iron-overloaded mice, we observed that the enzymes, phosphoglucomutase 1, glycogen debranching enzyme, and isocitrate dehydrogenase 1 (Idh1), which are involved in glycogen and glucose metabolism, were increased. Digital PCR further showed that Idh1 and Aco1, enzymes involved in the TCA cycle, were also elevated. Additionally, enzymatic activities of TCA cycle and methylated DNA were increased. Iron chelation reversed these phenomena. In conclusion, iron activation of glucose metabolism causes an increase of 2-HG and DNA methylation

    A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Get PDF
    Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells
    corecore