173 research outputs found

    Episodic transient deformation revealed by the analysis of multiple GNSS networks in the Noto Peninsula, central Japan

    Get PDF
    流体とスロースリップに駆動された能登半島群発地震 --ソフトバンク独自基準点データを用いた地殻変動解析結果--. 京都大学プレスリリース. 2023-06-13.Since November 30, 2020, an intense seismic swarm and transient deformation have been continuously observed in the Noto Peninsula, central Japan, which is a non-volcanic/geothermal area far from major plate boundaries. We modeled transient deformation based on a combined analysis of multiple Global Navigation Satellite System (GNSS) observation networks, including one operated by a private sector company (SoftBank Corp.), relocated earthquake hypocenters, and tectonic settings. Our analysis showed a total displacement pattern over 2 years shows horizontal inflation and uplift of up to ~ 70 mm around the source of the earthquake swarm. In the first 3 months, the opening of the shallow-dipping tensile crack had an estimated volumetric increase of ~ 1.4 × 10⁷ m³ at a depth of ~ 16 km. Over the next 15 months, the observed deformation was well reproduced by shear-tensile sources, which represent an aseismic reverse-type slip and the opening of a southeast-dipping fault zone at a depth of 14–16 km. We suggest that the upwelling fluid spread at a depth of ~ 16 km through an existing shallow-dipping permeable fault zone and then diffused into the fault zone, triggering a long-lasting sub-meter aseismic slip below the seismogenic depth. The aseismic slip further triggered intense earthquake swarms at the updip

    Identification of multiple actin-binding sites in cofilin-phosphatase Slingshot-1L

    Get PDF
    AbstractSlingshot-1L (SSH1L) is a phosphatase that specifically dephosphorylates and activates cofilin, an actin-severing and -depolymerizing protein. SSH1L binds to and is activated by F-actin in vitro, and co-localizes with F-actin in cultured cells. We examined the F-actin-binding activity, F-actin-mediated phosphatase activation, and subcellular distribution of various mutants of SSH1L. We identified three sites involved in F-actin binding of SSH1L: Trp-458 close to the C-terminus of the phosphatase domain, an LHK motif in the N-terminal region, and an LKR motif in the C-terminal region. These sites play unique roles in the control of subcellular localization and F-actin-mediated activation of SSH1L

    Base pressure controlled fabrication of high-mobility In2O3 thin film transistors

    Get PDF
    Transparent amorphous oxide semiconductors (TAOSs) have been extensively studied as active channel layers of thin-film transistors (TFTs) for next-generation flat-panel displays. Among TAOSs, amorphous In–Ga–Zn–O (a-IGZO) TFTs have now become the backplane standard for active-matrix liquid-crystal displays and activematrix organic light-emitting diode displays because of their reasonable field-effect mobility (μFE) of over 10 cm2 V−1 s−1, extremely low leakage current, low process temperature (\u3c350 °C), and large-area scalability [1]. Please click Download on the upper right corner to see the full abstract

    Red fluorescent cAMP indicator with increased affinity and expanded dynamic range

    Get PDF
    cAMP is one of the most important second messengers in biological processes. Cellular dynamics of cAMP have been investigated using a series of fluorescent indicators; however, their sensitivity was sub-optimal for detecting cAMP dynamics at a low concentration range, due to a low ligand affinity and/or poor dynamic range. Seeking an indicator with improved detection sensitivity, we performed insertion screening of circularly permuted mApple, a red fluorescent protein, into the cAMP-binding motif of PKA regulatory subunit Iα and developed an improved cAMP indicator named R-FlincA (Red Fluorescent indicator for cAMP). Its increased affinity (Kd = 0.3 μM) and expanded dynamic range (860% at pH 7.2) allowed the detection of subtle changes in the cellular cAMP dynamics at sub-μM concentrations, which could not be easily observed with existing indicators. Increased detection sensitivity also strengthened the advantages of using R-FlincA as a red fluorescent indicator, as it permits a series of applications, including multi-channel/function imaging of multiple second messengers and combinatorial imaging with photo-manipulation. These results strongly suggest that R-FlincA is a promising tool that accelerates cAMP research by revealing unobserved cAMP dynamics at a low concentration range

    Updated absolute gravity rate of change associated with glacial isostatic adjustment in Southeast Alaska and its utilization for rheological parameter estimation

    Get PDF
    In Southeast Alaska (SE-AK), rapid ground uplift of up to 3 cm/yr has been observed associated with post-Little Ice Age glacial isostatic adjustment (GIA). Geodetic techniques such as global navigation satellite system (GNSS) and absolute gravimetry have been applied to monitor GIA since the last 1990s. Rheological parameters for SE-AK were determined from dense GNSS array data in earlier studies. However, the absolute gravity rate of change observed in SE-AK was inconsistent with the ground uplift rate, mainly because few gravity measurements from 2006 to 2008 resulted in imprecise gravity variation rates. Therefore, we collected absolute gravity data at six gravity points in SE-AK every June in 2012, 2013, and 2015, and updated the gravity variation rate by reprocessing the absolute gravity data collected from 2006 to 2015. We found that the updated gravity variation rate at the six gravity points ranged from −2.05 to −4.40 μGal/yr, and its standard deviation was smaller than that reported in the earlier study by up to 88 %. We also estimated the rheological parameters under the assumption of the incompressible Earth to explain the updated gravity variation rate, and their optimal values were determined to be 55 km and 1.2×10¹⁹ Pa s for lithospheric thickness and upper mantle viscosity, respectively. These optimal values are consistent with those independently obtained from GNSS observations, and this fact indicates that absolute gravimetry can be one of the most effective methods in determining sub-surface structural parameters associated with GIA accurately. Moreover, we utilized the gravity variation rates for estimating the ratio of gravity variation to vertical ground deformation at the six gravity points in SE-AK. The viscous ratio values were obtained as −0.168 and −0.171 μGal/mm from the observed data and the calculated result, respectively. These ratios are greater (in absolute) than those for other GIA regions (−0.15 to −0.16 μGal/mm in Antarctica and Fennoscandia), because glaciers in SE-AK have melted more recently than in other regions

    Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault

    Get PDF
    The Great Sumatran Fault system in Indonesia is a major right-lateral trench-parallel system that can be divided into several segments, most of which have ruptured within the last century. This study focuses on the northern portion of the fault system which contains a 200-km-long segment that has not experienced a major earthquake in at least 170 years. In 2005, we established the Aceh GPS Network for the Sumatran Fault System (AGNeSS) across this segment. AGNeSS observes large displacements which include significant postseismic deformation from recent large megathrust earthquakes as well as interseismic deformation due to continued elastic loading of both the megathrust and the strike slip system. We parameterize the displacements due to afterslip on the megathrust using a model based on a rate- and state-dependent friction formalism. Using this approach, we are able to separate afterslip from other contributions. We remove predicted deformation due to afterslip from the observations, and use these corrected time series to infer the depth of shallow aseismic creep and deeper locked segments for the Great Sumatran Fault. In the northern portion of this fault segment, we infer aseismic creep down to 7.3 ± 4.8 km depth at a rate of 2.0 ± 0.6 cm/year. In the southwestern portion of the segment, we estimate a locking depth of 14.8 ± 3.4 km with a downdip slip rate of 1.6 ± 0.6 cm/year. This portion of the fault is capable of producing a magnitude 7.0 earthquake

    A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia

    Get PDF
    Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases ∼10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1β induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin–rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1β and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm

    High energy electron observation by Polar Patrol Balloon flight in Antarctica

    Get PDF
    We accomplished a balloon observation of the high-energy cosmic-ray electrons in 10-1000GeV to reveal the origin and the acceleration mechanism. The observation was carried out for 13 days at an average altitude of 35km by the Polar Patrol Balloon (PPB) around Antarctica in January 2004. The detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillation counters sandwiched between lead plates. The geometrical factor is about 600cm^2sr, and the total thickness of lead absorber is 9 radiation lengths. The performance of the detector has been confirmed by a test flight at the Sanriku Balloon Center and by an accelerator beam test using the CERN-SPS (Super Proton Synchrotron at CERN). The new telemetry system using the Iridium satellite, the power system supplied by solar panels and the automatic flight level control operated successfully during the flight. We collected 5.7×10^3 events over 100GeV, and selected the electron candidates by a preliminary data analysis of the shower images. We report here an outline of both detector and observation, and the first result of the electron energy spectrum over 100GeV obtained by an electronic counter

    Development of observation system for tsunami and crustal deformation

    Get PDF
    The 2011 off the Pacific coast of Tohoku earthquake (M9) occurred at 11 March in last year and huge tsunami brought severe damage around the Tohoku area. The huge earthquake brought large crustal movement. The movements were 24m on the forearc and 50m near the trench (Sato et al., 2011; Fujiwara et al., 2012). The observation, however, was measured after the occurrence and not in real-time. Therefore, we are developing new real-time observation system for tsunami and crustal movement developed by Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and Tohoku University. Our system is composed of seafloor stations and a buoy on sea surface, and these data are sent via satellites in real-time. We selected the m-TRITON buoy developed by JAMSTEC as the platform on sea surface. Because our target is the future Tonankai and Nankai earthquake, the buoy has to adapt slack mooring to stand strong sea current like the Kuroshio with speed of over 5 knots around Japan. We will attach recording systems for tsunami and geodetic movement and the transfer system to send data to satellites in real-time on the buoy. The power supply for them is covered with lithium batteries and the solar power generation. The seafloor station is composed of an equipment to transfer pressure data for tsunami detection and some transponders to detect geodetic movement. Tsunami data recorded by the seafloor pressure sensor is sent acoustically with interval of 15 minutes normally, but the interval changes to 15 seconds in tsunami occurrence. The geodetic movement data is collected with interval of one week. As positioning to monitor geodetic movement with high accuracy less than 10 cm, we adapt the Precise Point Positioning (PPP) technical scheme developed by Japan Aerospace Exploration Agency and have a plan to construct total system to four years.Abstract AOGS/AGU (WPGM) Joint Assembly at Singapore, 13-17 August, 201
    corecore