15 research outputs found
南極底層水を起点とする熱塩循環・物質循環のダイナミクス
第6回極域科学シンポジウム分野横断セッション:[IG] 全球環境変動を駆動する南大洋・南極氷床11月17日(火) 国立極地研究所 2階 大会議
Age distribution of Antarctic Bottom Water off Cape Darnley, East Antarctica, estimated using chlorofluorocarbon and sulfur hexafluoride
Chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) were used to investigate the timescale of Antarctic Bottom Water (AABW) that spreads off Cape Darnley (CD) in East Antarctica.The age of the AABW was estimated based on the observed SF6/CFC-12 ratio while taking into account tracer dilution by Lower Circumpolar Deep Water.Along the western canyons off CD and the ~ 3000 to 3500 m isobaths, the bottom water age was 20 years in the northwestern offshore region indicate inflows of AABW through the Princess Elizabeth Trough and Weddell Sea Deep Water, respectively.This study determined the age distribution in the region off CD, where three different types of AABW spread
Age distribution of Antarctic Bottom Water off Cape Darnley, East Antarctica, estimated using chlorofluorocarbon and sulfur hexafluoride
Chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) were used to investigate the timescale of Antarctic Bottom Water (AABW) that spreads off Cape Darnley (CD) in East Antarctica. The age of the AABW was estimated based on the observed SF6/CFC-12 ratio while taking into account tracer dilution by Lower Circumpolar Deep Water. Along the western canyons off CD and the similar to 3000 to 3500 m isobaths, the bottom water age was 20 years in the northwestern offshore region indicate inflows of AABW through the Princess Elizabeth Trough and Weddell Sea Deep Water, respectively. This study determined the age distribution in the region off CD, where three different types of AABW spread
Essential structural factors of annonaceous acetogenins as potent inhibitors of mitochondrial complex I
AbstractThe annonaceous acetogenins are the most potent of the known inhibitors of bovine heart mitochondrial complex I. These inhibitors act, at the terminal electron transfer step of the enzyme, in a similar way to the usual complex I inhibitors, such as piericidin A and rotenone; however, structural similarities are not apparent between the acetogenins and these known complex I inhibitors. A systematic set of isolated natural acetogenins was prepared and examined for their inhibitory actions with bovine heart mitochondrial complex I to identify the essential structural factors of these inhibitors for the exhibition of potent activity. Despite their very potent activity, the structural requirements of the acetogenins are not particularly rigid and remain somewhat ambiguous. The most common structural units, such as adjacent bis-tetrahydrofuran (THF) rings and hydroxyl groups in the 4- and/or 10-positions, were not essential for exhibiting potent activity. The stereochemistry surrounding the THF rings, surprisingly, seemed to be unimportant, which was corroborated by an exhaustive conformational space search analysis, indicating that the model compounds, with different stereochemical arrangements around the THF moieties, were in fairly good superimposition. Proper length and flexibility of the alkyl spacer moiety, which links the THF and the α,β-unsaturated γ-lactone ring moieties, were essential for the potent activity. This probably results from some sort of specific conformation of the spacer moiety which regulates the two ring moieties to locate into an optimal spatial position on the enzyme. It is, therefore, suggested that the structural specificity of the acetogenins, required for optimum inhibition, differs significantly from that of the common complex I inhibitors in which essential structural units are compactly arranged and conveniently defined. The structure–activity profile for complex I inhibition is discussed in comparison with those for other biological activities
All-Optical Wide-Field Selective Imaging of Fluorescent Nanodiamonds in Cells, In Vivo and Ex Vivo
Fluorescence imaging is a critical tool to understand the spatial distribution of biomacromolecules in cells and in vivo, providing information on molecular dynamics and interactions. Numerous valuable insights into biological systems have been provided by the specific detection of various molecular species. However, molecule-selective detection is often hampered by background fluorescence, such as cell autofluorescence and fluorescence leakage from molecules stained by other dyes. Here we describe a method for all-optical selective imaging of fluorescent nanodiamonds containing nitrogen-vacancy centers (NVCs) for wide-field fluorescence bioimaging. The method is based on the fact that the fluorescence intensity of NVCs strictly depends on the configuration of ground-state electron spins, which can be controlled by changing the pulse recurrence intervals of microsecond excitation laser pulses. Therefore, by using regulated laser pulses, we can oscillate the fluorescence from NVCs in a nanodiamond, while oscillating other optical signals in the opposite phase to NVCs. As a result, we can reconstruct a selective image of a nanodiamond by using a series of oscillated fluorescence images. We demonstrate application of the method to the selective imaging of nanodiamonds in live cells, in microanimals, and on a hippocampal slice culture obtained from a rat. Our approach potentially enables us to achieve high-contrast images of nanodiamond-labeled biomolecules with a signal-to-background ratio improved by up to 100-fold over the standard fluorescence image, thereby providing a more powerful tool for the investigation of molecular dynamics in cells and in vivo