29 research outputs found

    KIMA: Noise: A visual sound installation on urban noise

    Get PDF
    KIMA: Noise is a participatory art piece inviting audiences to explore impact of urban noises interactively. Using specific urban sound sources, the audience experiences noise as spatial soundscapes, responding to it, physically engaging and interacting with it. KIMA: Noise creates awareness for the phenomenon of noise pollution. The paper looks at preeminent research in the field, and draws conclusions of how sound affects us as individuals. The art project KIMA: Noise is introduced technically and conceptually

    Cobalt 2,2 '-biimidazole complexes co-crystallised with di-acids - synthesis, structure and quantum chemical calculations

    No full text
    The synthesis and crystal structure of [Co(Hbiim)(2)(H(2)biim)](2)(p-OOCC6H4COOH)(2).H2O (2) is presented. The cobalt(III) complexes are bridged by terephthalates and water molecules, giving a rare, five-fold interpenetrated, net built from 3-connected nodes. The vertex symbol (topology) of this net is determined to 4 122 122, 4 126, 12(4) 12(6) 12(6), or 4 12(2), 4 12(2), 12(3), using the Wellsian point symbol system. However, depending on the interpretation of the hydrogen bond pattern, this structure may also be interpreted as a single self-interpenetrating net via a water bridge. Quantum chemical calculations (DFT and semi-empirical methods) were used to investigate which is the more appropriate description by estimation of the directional forces in the structure. This approach favours five interpenetrating nets

    Spin distributions in antiferromagnetically coupled Mn2+Cu2+ systems: from the pair to the infinite chain

    No full text
    Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet
    corecore