30 research outputs found

    KIMA: Noise: A visual sound installation on urban noise

    Get PDF
    KIMA: Noise is a participatory art piece inviting audiences to explore impact of urban noises interactively. Using specific urban sound sources, the audience experiences noise as spatial soundscapes, responding to it, physically engaging and interacting with it. KIMA: Noise creates awareness for the phenomenon of noise pollution. The paper looks at preeminent research in the field, and draws conclusions of how sound affects us as individuals. The art project KIMA: Noise is introduced technically and conceptually

    Some notes on distempers, calcimine and casein paints on linseed oil and other drying oils used in paint making

    No full text

    Spin distributions in antiferromagnetically coupled Mn2+Cu2+ systems: from the pair to the infinite chain

    No full text
    Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet

    A SmartBed for Non-obtrusive Physiological Monitoring During Sleep: The LAID Project

    No full text
    The individual experience of inadequate or insufficient sleep is one of the most common health issues in the industrialized world. The 65% of Italian population reports disturbed sleep experiences, while chronic sleep disorders affect about 10% of the population. The people with inadequate and unsatisfactory sleep often suffers drowsiness during the day associated with both somatic and mental disorders. For these reasons, the systematic and continuative monitoring of sleep is one of the main objectives in preventive, personalized and participatory sleep medicine. The purpose of this paper is to describe the architecture of a “smart mattress’’ (SmartBed) that is the main outcome of the Italian R&D project called LAID. SmartBed will be able to non-obtrusively collect physiological and environmental parameters and signals, to processing them and to provide information about the quality of sleep, the levels of stress, and more generally the well-being of an individual. Specifically, SmartBed will be able to estimate data relating to cardiorespiratory activity, movements, body position, snoring and environmental parameters. SmartBed aims to obtain a continuative and ecological assessment of sleep and well-being of a person, in order to improve his quality of life. SmartBed will be a fundamental tool for carrying out both longitudinal and epidemiological studies on the quality of sleep and life on general population
    corecore