746 research outputs found
Enhancing Twitter Data Analysis with Simple Semantic Filtering: Example in Tracking Influenza-Like Illnesses
Systems that exploit publicly available user generated content such as
Twitter messages have been successful in tracking seasonal influenza. We
developed a novel filtering method for Influenza-Like-Illnesses (ILI)-related
messages using 587 million messages from Twitter micro-blogs. We first filtered
messages based on syndrome keywords from the BioCaster Ontology, an extant
knowledge model of laymen's terms. We then filtered the messages according to
semantic features such as negation, hashtags, emoticons, humor and geography.
The data covered 36 weeks for the US 2009 influenza season from 30th August
2009 to 8th May 2010. Results showed that our system achieved the highest
Pearson correlation coefficient of 98.46% (p-value<2.2e-16), an improvement of
3.98% over the previous state-of-the-art method. The results indicate that
simple NLP-based enhancements to existing approaches to mine Twitter data can
increase the value of this inexpensive resource.Comment: 10 pages, 5 figures, IEEE HISB 2012 conference, Sept 27-28, 2012, La
Jolla, California, U
Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration.
Historically, probabilistic models for decision support have focused on discrimination, e.g., minimizing the ranking error of predicted outcomes. Unfortunately, these models ignore another important aspect, calibration, which indicates the magnitude of correctness of model predictions. Using discrimination and calibration simultaneously can be helpful for many clinical decisions. We investigated tradeoffs between these goals, and developed a unified maximum-margin method to handle them jointly. Our approach called, Doubly Optimized Calibrated Support Vector Machine (DOC-SVM), concurrently optimizes two loss functions: the ridge regression loss and the hinge loss. Experiments using three breast cancer gene-expression datasets (i.e., GSE2034, GSE2990, and Chanrion's datasets) showed that our model generated more calibrated outputs when compared to other state-of-the-art models like Support Vector Machine (p=0.03, p=0.13, and p<0.001) and Logistic Regression (p=0.006, p=0.008, and p<0.001). DOC-SVM also demonstrated better discrimination (i.e., higher AUCs) when compared to Support Vector Machine (p=0.38, p=0.29, and p=0.047) and Logistic Regression (p=0.38, p=0.04, and p<0.0001). DOC-SVM produced a model that was better calibrated without sacrificing discrimination, and hence may be helpful in clinical decision making
Ranking Medical Subject Headings using a factor graph model.
Automatically assigning MeSH (Medical Subject Headings) to articles is an active research topic. Recent work demonstrated the feasibility of improving the existing automated Medical Text Indexer (MTI) system, developed at the National Library of Medicine (NLM). Encouraged by this work, we propose a novel data-driven approach that uses semantic distances in the MeSH ontology for automated MeSH assignment. Specifically, we developed a graphical model to propagate belief through a citation network to provide robust MeSH main heading (MH) recommendation. Our preliminary results indicate that this approach can reach high Mean Average Precision (MAP) in some scenarios
Grid multi-category response logistic models.
BackgroundMulti-category response models are very important complements to binary logistic models in medical decision-making. Decomposing model construction by aggregating computation developed at different sites is necessary when data cannot be moved outside institutions due to privacy or other concerns. Such decomposition makes it possible to conduct grid computing to protect the privacy of individual observations.MethodsThis paper proposes two grid multi-category response models for ordinal and multinomial logistic regressions. Grid computation to test model assumptions is also developed for these two types of models. In addition, we present grid methods for goodness-of-fit assessment and for classification performance evaluation.ResultsSimulation results show that the grid models produce the same results as those obtained from corresponding centralized models, demonstrating that it is possible to build models using multi-center data without losing accuracy or transmitting observation-level data. Two real data sets are used to evaluate the performance of our proposed grid models.ConclusionsThe grid fitting method offers a practical solution for resolving privacy and other issues caused by pooling all data in a central site. The proposed method is applicable for various likelihood estimation problems, including other generalized linear models
pSCANNER: Patient-centered scalable national network for effectiveness research
pre-printThis article describes the patient-centered Scalable National Network for Effectiveness Research (pSCANNER), which is part of the recently formed PCORnet, a national network composed of learning healthcare systems and patient-powered research networks funded by the Patient Centered Outcomes Research Institute (PCORI). It is designed to be a stakeholder-governed federated network that uses a distributed architecture to integrate data from three existing networks covering over 21 million patients in all 50 states: (1) VA Informatics and Computing Infrastructure (VINCI), with data from Veteran Health Administration's 151 inpatient and 909 ambulatory care and community-based outpatient clinics; (2) the University of California Research exchange (UC-ReX) network, with data from UC Davis, Irvine, Los Angeles, San Francisco, and San Diego; and (3) SCANNER, a consortium of UCSD, Tennessee VA, and three federally qualified health systems in the Los Angeles area supplemented with claims and health information exchange data, led by the University of Southern California. Initial use cases will focus on three conditions: (1) congestive heart failure; (2) Kawasaki disease; (3) obesity. Stakeholders, such as patients, clinicians, and health service researchers, will be engaged to prioritize research questions to be answered through the network. We will use a privacy-preserving distributed computation model with synchronous and asynchronous modes. The distributed system will be based on a common data model that allows the construction and evaluation of distributed multivariate models for a variety of statistical analyses
ModelChain: Decentralized Privacy-Preserving Healthcare Predictive Modeling Framework on Private Blockchain Networks
Cross-institutional healthcare predictive modeling can accelerate research
and facilitate quality improvement initiatives, and thus is important for
national healthcare delivery priorities. For example, a model that predicts
risk of re-admission for a particular set of patients will be more
generalizable if developed with data from multiple institutions. While
privacy-protecting methods to build predictive models exist, most are based on
a centralized architecture, which presents security and robustness
vulnerabilities such as single-point-of-failure (and single-point-of-breach)
and accidental or malicious modification of records. In this article, we
describe a new framework, ModelChain, to adapt Blockchain technology for
privacy-preserving machine learning. Each participating site contributes to
model parameter estimation without revealing any patient health information
(i.e., only model data, no observation-level data, are exchanged across
institutions). We integrate privacy-preserving online machine learning with a
private Blockchain network, apply transaction metadata to disseminate partial
models, and design a new proof-of-information algorithm to determine the order
of the online learning process. We also discuss the benefits and potential
issues of applying Blockchain technology to solve the privacy-preserving
healthcare predictive modeling task and to increase interoperability between
institutions, to support the Nationwide Interoperability Roadmap and national
healthcare delivery priorities such as Patient-Centered Outcomes Research
(PCOR)
Recommended from our members
Representation in stochastic search for phylogenetictree reconstruction
Phylogenetic tree reconstruction is a process in which the ancestral relationships among a group of organisms are inferred from their DNA sequences. For all but trivial sized data sets, finding the optimal tree is computationally intractable. Many heuristic algorithms exist, but the branch-swapping algorithm used in the software package PAUP is the most popular. This method performs a stochastic search over the space of trees, using a branch-swapping operation to construct neighboring trees in the search space. This study introduces a new stochastic search algorithm that operates over an alternative representation of trees, namely as permutations of taxa giving the order in which they are processed during stepwise addition. Experiments on several data sets suggest that this algorithm for generating an initial tree, when followed by branch-swapping, can produce better trees for a given total amount of time.Engineering and Applied Science
Approximation properties of haplotype tagging
BACKGROUND: Single nucleotide polymorphisms (SNPs) are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. RESULTS: It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n(2 )- n)/2) for n haplotypes but not approximable within (1 - ε) ln(n/2) for any ε > 0 unless NP ⊂ DTIME(n(log log n)). A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O([Image: see text] (2m - p + 1)) ≤ O(m(n(2 )- n)/2) where p ≤ min(n, m) for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. CONCLUSION: The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel
- …