20 research outputs found

    HIV's evasion of the cellular immune response

    Get PDF
    Despite a strong cytotoxic T-lymphocyte (CTL) response directed against viral antigens, untreated individuals infected with the human immunodeficiency virus (HIV-1) develop AIDS, We have found that primary T cells infected with HIV-1 downregulate surface MHC class I antigens and are resistant to lysis by HLA-A2-restricted CTL clones. In contrast, cells infected with an HIV-1 in which the nef gene is disrupted are sensitive to CTLs in an MHC and peptide-specific manner. In primary T cells HLA-A2 antigens are downmodulated more dramatically than total MHC class I antigens, suggesting that nef selectively downmodulates certain MHC class I antigens. In support of this, studies on ceils expressing individual MHC class I alietes have revealed that nef does not downmodulate HLA-C and HLA-E antigens, This selective downmodulation allows Infected cells to maintain resistance to certain natural killer cells that lyse infected cells expressing low levels of MHC class I antigens. Downmodulation of MHC class I HLA-A2 antigens occurs not only in primary T cells, but also in B and astrocytoma cell lines. No effect of other HIV-1 accessory proteins such as vpu and vpr was observed. Thus Nef is a protein that may promote escape of HIV-1 from immune surveillance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75570/1/j.1600-065X.1999.tb01283.x.pd

    Single amino acid change in gp41 region of HIV-1 alters bystander apoptosis and CD4 decline in humanized mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism by which HIV infection leads to a selective depletion of CD4 cells leading to immunodeficiency remains highly debated. Whether the loss of CD4 cells is a direct consequence of virus infection or bystander apoptosis of uninfected cells is also uncertain.</p> <p>Results</p> <p>We have addressed this issue in the humanized mouse model of HIV infection using a HIV variant with a point mutation in the gp41 region of the Env glycoprotein that alters its fusogenic activity. We demonstrate here that a single amino acid change (V38E) altering the cell-to-cell fusion activity of the Env minimizes CD4 loss in humanized mice without altering viral replication. This differential pathogenesis was associated with a lack of bystander apoptosis induction by V38E virus even in the presence of similar levels of infected cells. Interestingly, immune activation was observed with both WT and V38E infection suggesting that the two phenomena are likely not interdependent in the mouse model.</p> <p>Conclusions</p> <p>We conclude that Env fusion activity is one of the determinants of HIV pathogenesis and it may be possible to attenuate HIV by targeting gp41.</p

    Transcriptional Profiling in Pathogenic and Non-Pathogenic SIV Infections Reveals Significant Distinctions in Kinetics and Tissue Compartmentalization

    Get PDF
    Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome

    Comparison of electromagnetic field distribution in vicinity of patch and slot antennas

    No full text
    In this work, a quantitative analysis of the electromagnetic fields in the vicinity of a patch and slot antenna, excited at 24 GHz, is conducted. The spatial decay of the electric and magnetic fields as well as the power density is evaluated on top of the substrate where other package/board components can be integrated. The results reveal that the spatial decay of the fields is qualitatively similar for both antenna types. Based on this analysis, favourable component positions in the vicinity of the antennas can be deduced with the aim of ensuring electromagnetic reliability (EMR)

    Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process.

    No full text
    The role of a conserved polar motif (STS) in the exofacial loop between helices 7 and 8 of GLUT4 for transporter function was investigated by site-directed mutagenesis and expression of the constructs in COS-7 cells. Reconstituted glucose-transport activity, cytochalasin B binding and photolabelling with the exofacial label 2-N4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1, 3-bis-(d-mannosyloxy)-2-propylamine (ATB-BMPA) were assayed in membranes from transfected cells and corrected for immunoreactivity of expressed transporters. Replacement of Ser-294 with Ala or Thr suppressed transport activity and cytochalasin B binding. ATB-BMPA photolabelling was normal in S294A mutants, and even increased in S294T mutants. Replacement of Thr-295 with Ala suppressed transport activity and cytochalasin B binding, whereas ATB-BMPA photolabelling was normal; substitution of Ser failed to alter the investigated parameters. Similarly, exchanging Ser-296 for Ala generated a normally functioning protein. The data suggest that Ser-294 and Thr-295 are involved in the conformational change in GLUT during the transport process, and that their substitution may arrest the transporter in an outward-facing conformation

    Modeling and analysis of electromagnetic field distribution in vicinity of patch antennas at millimeter-wave frequencies

    No full text
    In this work, the spatial electric and magnetic field distributions in the vicinity of a rectangular patch antenna, excited with the fundamental transverse magnetic (TM) resonance mode, are analyzed. The results yield physical insight into the lateral decay of the dominant field components with distance from the antenna. Furthermore, the effects of the dielectric substrate, dielectric losses and the antenna feed on the field and power decay are individually quantified. Based on the results obtained, design guidelines for compact component placement with the aim of reducing undesired electromagnetic coupling can be derived

    Design and Characterization of a Low Profile Miniaturized UHF PIFA for Compact Wireless Sensor Nodes

    No full text
    In this work, a miniaturized planar inverted-F antenna (PIFA) with low profile on a small ground plane is designed and characterized for integration in a compact autarkic wireless sensor node. The physical size of the antenna is 24 mm x 11 mm x 3 mm (0.07Ξ» x 0.03Ξ» x 0.01Ξ») including the small ground plane and operates in the UHF band at 868 MHz with a -10 dB impedance bandwidth of 9 MHz. The antenna gain is -12 dBi. The resonance frequency and input impedance can be easily tuned by altering the meander length and shorting post position, respectively. Simulation and measurement results are presented
    corecore