360 research outputs found

    Are Renewable Portfolio Standards a Policy Cure-All?: A Case Study of Illinois\u27s Experience

    Full text link
    Renewable Portfolio Standards (“RPS”) are stated to have a plethora of benefits: job creation, renewable energy growth, reduced carbon emissions, and a reduction in retail electricity prices. Often when a policy has multiple agendas, the policy fails to meet any of the objectives. Twenty-nine states have implemented an RPS, but state policies vary with regard to the sources considered eligible, out-of-state generation, credit trading, and the process of ensuring compliance. The various policy facets affect the growth of renewable energy within the state and affect the additional stated benefits of job creation and reduced emissions. This paper examines Illinois’s RPS as a case study for analyzing the many goals and impacts of other RPSs. We use Illinois’s market for electricity as a case study for several reasons. First, the RPS in Illinois focuses on encouraging wind generation by requiring seventy-five percent of the standard be generated from wind. This aspect allows us to focus on the growth of the wind industry. Next, the electricity market in Illinois allows customers to choose their electricity supplier. We can analyze restructuring and its impact on the renewable sector. Finally, Illinois is surrounded by states whose renewable industry may benefit from Illinois’s mandate. We will also examine the impact of Illinois’s standard on the renewable electricity generation in the surrounding states

    Flexible microwave system to measure the electron number density and quantify the communications impact of electric thruster plasma plumes

    Full text link
    An advanced microwave interferometric system operating in the Ku (12–18 GHz) band has been implemented for use in very large vacuum chambers to determine the effects of electromagnetic wave propagation through a plasma plume created by a space electric propulsion thruster. This diagnostic tool is used to nonintrusively obtain the local electron number density as well as provide information necessary for understanding impact to communications and other spacecraft electromagnetic systems. The use of a nonintrusive electromagnetic measurement provides highly accurate line integrated density and avoids problems caused by intrusive measurement techniques. If the plasma is symmetrical, local plasma density can also be determined accurately using well known inversion techniques. A network analyzer acts as a transmitter and receiver while a two axis positioning system maps the amplitude and phase variation of a transmitted signal over one plane of the plasma plume. The utilization of a 6 m×9 m vacuum chamber effectively minimizes plasma boundary effects, but the longer cable path lengths have required a frequency conversion circuit to reduce power loss and phase uncertainty at high frequencies. Two studies are presented: the first is a measurement of the local electron density in the plume of a 1 kW arcjet and the second is a measurement of attenuation in the plume of a stationary plasma thruster. Both the arcjet and SPT emit a steady state conical unmagnetized plasma that is radially symmetric. The arcjet peak density is 1015–1016 m−3 along centerline and the SPT peak density is 1016–1017 m−3 along centerline. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71094/2/RSINAK-68-2-1189-1.pd

    Vermont Price Variation Analysis

    Get PDF
    Presentation to Vermont\u27s Green Mountain Care Board about a Price Variation Analysis undertaken in partnership with the University of Vermont College of Medicine and Wakely Consulting Group. The presentation outlined price variations across the state and suggested a process and methodology that the Board could use to set standard rates

    RF signal impact study of an SPT

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76213/1/AIAA-1996-2706-928.pd

    Plume characterization of the SPT-100

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76626/1/AIAA-1996-3298-655.pd

    Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation

    Get PDF
    BACKGROUND: Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS: Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS: While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs

    Sticking under wet conditions: the remarkable attachment abilities of the torrent frog, staurois guttatus

    Get PDF
    Tree frogs climb smooth surfaces utilising capillary forces arising from an air-fluid interface around their toe pads, whereas torrent frogs are able to climb in wet environments near waterfalls where the integrity of the meniscus is at risk. This study compares the adhesive capabilities of a torrent frog to a tree frog, investigating possible adaptations for adhesion under wet conditions. We challenged both frog species to cling to a platform which could be tilted from the horizontal to an upside-down orientation, testing the frogs on different levels of roughness and water flow. On dry, smooth surfaces, both frog species stayed attached to overhanging slopes equally well. In contrast, under both low and high flow rate conditions, the torrent frogs performed significantly better, even adhering under conditions where their toe pads were submerged in water, abolishing the meniscus that underlies capillarity. Using a transparent platform where areas of contact are illuminated, we measured the contact area of frogs during platform rotation under dry conditions. Both frog species not only used the contact area of their pads to adhere, but also large parts of their belly and thigh skin. In the tree frogs, the belly and thighs often detached on steeper slopes, whereas the torrent frogs increased the use of these areas as the slope angle increased. Probing small areas of the different skin parts with a force transducer revealed that forces declined significantly in wet conditions, with only minor differences between the frog species. The superior abilities of the torrent frogs were thus due to the large contact area they used on steep, overhanging surfaces. SEM images revealed slightly elongated cells in the periphery of the toe pads in the torrent frogs, with straightened channels in between them which could facilitate drainage of excess fluid underneath the pad

    Electric fields and valence band offsets at strained [111] heterojunctions

    Full text link
    [111] ordered common atom strained layer superlattices (in particular the common anion GaSb/InSb system and the common cation InAs/InSb system) are investigated using the ab initio full potential linearized augmented plane wave (FLAPW) method. We have focused our attention on the potential line-up at the two sides of the homopolar isovalent heterojunctions considered, and in particular on its dependence on the strain conditions and on the strain induced electric fields. We propose a procedure to locate the interface plane where the band alignment could be evaluated; furthermore, we suggest that the polarization charges, due to piezoelectric effects, are approximately confined to a narrow region close to the interface and do not affect the potential discontinuity. We find that the interface contribution to the valence band offset is substantially unaffected by strain conditions, whereas the total band line-up is highly tunable, as a function of the strain conditions. Finally, we compare our results with those obtained for [001] heterojunctions.Comment: 18 pages, Latex-file, to appear in Phys.Rev.
    • 

    corecore