2,857 research outputs found
A field theoretic approach to master equations and a variational method beyond the Poisson ansatz
We develop a variational scheme in a field theoretic approach to a stochastic
process. While various stochastic processes can be expressed using master
equations, in general it is difficult to solve the master equations exactly,
and it is also hard to solve the master equations numerically because of the
curse of dimensionality. The field theoretic approach has been used in order to
study such complicated master equations, and the variational scheme achieves
tremendous reduction in the dimensionality of master equations. For the
variational method, only the Poisson ansatz has been used, in which one
restricts the variational function to a Poisson distribution. Hence, one has
dealt with only restricted fluctuation effects. We develop the variational
method further, which enables us to treat an arbitrary variational function. It
is shown that the variational scheme developed gives a quantitatively good
approximation for master equations which describe a stochastic gene regulatory
network.Comment: 13 pages, 2 figure
The stochastic pump current and the non-adiabatic geometrical phase
We calculate a pump current in a classical two-state stochastic chemical
kinetics by means of the non-adiabatic geometrical phase interpretation. The
two-state system is attached to two particle reservoirs, and under a periodic
perturbation of the kinetic rates, it gives rise to a pump current between the
two-state system and the absorbing states. In order to calculate the pump
current, the Floquet theory for the non-adiabatic geometrical phase is extended
from a Hermitian case to a non-Hermitian case. The dependence of the pump
current on the frequency of the perturbative kinetic rates is explicitly
derived, and a stochastic resonance-like behavior is obtained.Comment: 11 page
Population III Gamma Ray Bursts
We discuss a model of Poynting-dominated gamma-ray bursts from the collapse
of very massive first generation (pop. III) stars. From redshifts of order 20,
the resulting relativistic jets would radiate in the hard X-ray range around 50
keV and above, followed after roughly a day by an external shock component
peaking around a few keV. On the same timescales an inverse Compton component
around 75 GeV may be expected, as well as a possible infra-red flash. The
fluences of these components would be above the threshold for detectors such as
Swift and Fermi, providing potentially valuable information on the formation
and properties of what may be the first luminous objects and their black holes
in the high redshift Universe.Comment: 12 pages; Apj, subm. 12/10/2009; accepted 04/12/201
In-situ photoemission study of Pr_{1-x}Ca_xMnO_3 epitaxial thin films with suppressed charge fluctuations
We have performed an {\it in-situ} photoemission study of Pr_{1-x}Ca_xMnO_3
(PCMO) thin films grown on LaAlO_3 (001) substrates and observed the effect of
epitaxial strain on the electronic structure. We found that the chemical
potential shifted monotonically with doping, unlike bulk PCMO, implying the
disappearance of incommensurate charge fluctuations of bulk PCMO. In the
valence-band spectra, we found a doping-induced energy shift toward the Fermi
level (E_F) but there was no spectral weight transfer, which was observed in
bulk PCMO. The gap at E_F was clearly seen in the experimental band dispersions
determined by angle-resolved photoemission spectroscopy and could not be
explained by the metallic band structure of the C-type antiferromagnetic state,
probably due to localization of electrons along the ferromagnetic chain
direction or due to another type of spin-orbital ordering.Comment: 5 pages, 4 figure
Potential Energy Function for Continuous State Models of Globular Proteins
One of the approaches to protein structure prediction is to obtain energy functions which can recognize the native conformation of a given sequence among a zoo of conformations. The discriminations can be done by assigning the lowest energy to the native conformation, with the guarantee that the native is in the zoo. Well-adjusted functions, then, can be used in the search for other (near-) natives. Here the aim is the discrimination at relatively high resolution (RMSD difference between the native and the closest nonnative is around 1 Ă
) by pairwise energy potentials. The potential is trained using the experimentally determined native conformation of only one protein, instead of the usual large survey over many proteins. The novel feature is that the native structure is compared to a vastly wider and more challenging array of nonnative structures found not only by the usual threading procedure, but by wide-ranging local minimization of the potential. Because of this extremely demanding search, the native is very close to the apparent global minimum of the potential function. The global minimum property holds up for one other protein having 60% sequence identity, but its performance on completely dissimilar proteins is of course much weaker.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63101/1/106652700750050835.pd
Spin-filter tunnel junction with matched Fermi surfaces
Efficient injection of spin-polarized current into a semiconductor is a basic
prerequisite for building semiconductor-based spintronic devices. Here, we use
inelastic electron tunneling spectroscopy to show that the efficiency of
spin-filter-type spin injectors is limited by spin scattering of the tunneling
electrons. By matching the Fermi-surface shapes of the current injection source
and target electrode material, spin injection efficiency can be significantly
increased in epitaxial ferromagnetic insulator tunnel junctions. Our results
demonstrate that not only structural but also Fermi-surface matching is
important to suppress scattering processes in spintronic devices.Comment: 5 pages, 4 figure
Roles of proton-neutron interactions in alpha-like four-nucleon correlations
An extended pairing plus QQ force model, which has been shown to successfully
explain the nuclear binding energy and related quantities such as the symmetry
energy, is applied to study the alpha-like four-nucleon correlations in
1f_{7/2} shell nuclei.
The double difference of binding energies, which displays a characteristic
behavior at , is interpreted in terms of the alpha-like
correlations. Important roles of proton-neutron interactions forming the
alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.
- âŠ