2,371 research outputs found

    Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides

    Full text link
    A theory of Kondo lattices is developed for the t-J model on a square lattice. The spin susceptibility is described in a form consistent with a physical picture of Kondo lattices: Local spin fluctuations at different sites interact with each other by a bare intersite exchange interaction, which is mainly composed of two terms such as the superexchange interaction, which arises from the virtual exchange of spin-channel pair excitations of electrons across the Mott-Hubbard gap, and an exchange interaction arising from that of Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by intersite spin fluctuations developed because of itself. The enhanced exchange interaction is responsible for the development of superconducting fluctuations as well as the Cooper pairing between Gutzwiller's quasi-particles. On the basis of the microscopic theory, we develop a phenomenological theory of low-temperature superconductivity and pseudo-gaps in the under-doped region as well as high-temperature superconductivity in the optimal-doped region. Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and (0,\pm\pi/a), with a the lattice constant, or X points at the chemical potential are swept away by strong inelastic scatterings, and quasi-particles are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or line. As temperatures decrease in the vicinity of superconducting critical temperatures, pseudo-gaps become smaller and the well-defined region is extending toward X points. The condensation of d\gamma-wave Cooper pairs eventually occurs at low enough temperatures when the pair breaking by inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure

    Dualistic Development and Phases: Possible Relevance of the Japanese Experience to Contemporary Less-Developed Countries

    Get PDF
    This paper briefly explains the concept of dualistic development, the coexistance of modern and traditional sectors, as observed in Japanese economic development. Instead of considering the traditional components as residuals of an economy, the author focuses on the active roles that these elements have played and divides the history of Japanese economic development into four phases, distinguished by the different characteristics of these roles. According to the author, the experience of Japan could have relevance to contemporary developing nations. As an example of application, the author proposes the use of "subjective equilibria" for studying intersectoral migration with the existence of surplus labor in the traditional (or rural) sector

    Magnetic and charge structures in itinerant-electron magnets: Coexistence of multiple SDW and CDW

    Full text link
    A theory of Kondo lattices is applied to studying possible magnetic and charge structures of itinerant-electron antiferromagnets. Even helical spin structures can be stabilized when the nesting of the Fermi surface is not sharp and the superexchange interaction, which arises from the virtual exchange of pair excitations across the Mott-Hubbard gap, is mainly responsible for magnetic instability. Sinusoidal spin structures or spin density waves (SDW) are only stabilized when the nesting of the Fermi surface is sharp enough and a novel exchange interaction arising from that of pair excitations of quasi-particles is mainly responsible for magnetic instability. In particular, multiple SDW are stabilized when their incommensurate ordering wave-numbers ±Q\pm{\bf Q} are multiple; magnetizations of different ±Q\pm{\bf Q} components are orthogonal to each other in double and triple SDW when magnetic anisotropy is weak enough. Unless ±2Q\pm 2{\bf Q} are commensurate, charge density waves (CDW) with ±2Q\pm 2{\bf Q} coexist with SDW with ±Q\pm{\bf Q}. Because the quenching of magnetic moments by the Kondo effect depends on local numbers of electrons, the phase of CDW or electron densities is such that magnetic moments are large where the quenching is weak. It is proposed that the so called stipe order in cuprate-oxide high-temperature superconductors must be the coexisting state of double incommensurate SDW and CDW.Comment: 10 pages, no figure

    Effective base point free theorem for log canonical pairs--Koll\'ar type theorem

    Full text link
    We prove Koll\'ar's effective base point free theorem for log canonical pairs.Comment: 9 pages, v2: Appendix was added, minor revisions, v3: minor modifications, title changed, v4: minor modifications, to appear in Tohoku Math.

    Frustrated electron liquids in the Hubbard model

    Get PDF
    The ground state of the Hubbard model is studied within the constrained Hilbert space where no order parameter exists. The self-energy of electrons is decomposed into the single-site and multisite self-energies. The calculation of the single-site self-energy is mapped to a problem of self-consistently determining and solving the Anderson model. When an electron reservoir is explicitly considered, it is proved that the single-site self-energy is that of a normal Fermi liquid even if the multisite self-energy is anomalous. Thus, the ground state is a normal Fermi liquid in the supreme single-site approximation (S^3A). In the strong-coupling regime, the Fermi liquid is stabilized by the Kondo effect in the S^3A and is further stabilized by the Fock-type term of the superexchange interaction or the resonating-valence-bond (RVB) mechanism beyond the S^3A. The stabilized Fermi liquid is frustrated as much as an RVB spin liquid in the Heisenberg model. It is a relevant unperturbed state that can be used to study a normal or anomalous Fermi liquid and an ordered state in the whole Hilbert space by Kondo lattice theory. Even if higher-order multisite terms than the Fock-type term are considered, the ground state cannot be a Mott insulator. It can be merely a gapless semiconductor even if the multisite self-energy is so anomalous that it is divergent at the chemical potential. A Mott insulator is only possible as a high temperature phase.Comment: 11 pages, no figur

    Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells

    Full text link
    We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting. The theory introduces a valley coupling parameter, vvv_v, which encapsulates the physics of the quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The resulting formalism provides rather simple analytical results for several geometries of interest, including a finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas. Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate. The latter may pose a numerical challenge for atomistic techniques like tight-binding, because of its two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical. We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR

    Opening of a pseudogap in a quasi-two dimensional superconductor due to critical thermal fluctuations

    Get PDF
    We examine the role of the anisotropy of superconducting critical thermal fluctuations in the opening of a pseudogap in a quasi-two dimensional superconductor such as a cuprate-oxide high-temperature superconductor. When the anisotropy between planes and their perpendicular axis is large enough and its superconducting critical temperature T_c is high enough, the fluctuations are much developed in its critical region so that lifetime widths of quasiparticles are large and the energy dependence of the selfenergy deviates from that of Landau's normal Fermi liquids. A pseudogap opens in such a critical region because quasiparticle spectra around the chemical potential are swept away due to the large lifetime widths. The pseudogap never smoothly evolves into a superconducting gap; it starts to open at a temperature higher than T_c while the superconducting gap starts to open just at T_c. When T_c is rather low but the ratio of varepsilon_G(0)/k_BT_c, with varepsilon_G(0) the superconducting gap at T=0K and k_B the Boltzmann constant, is much larger than a value about 4 according to the mean-field theory, the pseudogap must be closing as temperature T approaches to the low T_c because thermal fluctuations become less developed as T decreases. Critical thermal fluctuations cannot cause the opening of a prominent pseudogap in an almost isotropic three dimensional superconductor, even if its T_c is high.Comment: 25 pages, 5 figures (14 subfigures

    Theory of itinerant-electron ferromagnetism

    Full text link
    A theory of Kondo lattices or a 1/d1/d expansion theory, with dd spatial dimensionality, is applied to studying itinerant-electron ferromagnetism. Two relevant multi-band models are examined: a band-edge model where the chemical potential is at one of band-edges, the top or bottom of bands, and a flat-band model where one of bands is almost flat or dispersionless and the chemical potential is at the flat band. In both the models, a novel ferromagnetic exchange interaction arises from the virtual exchange of pair excitations of quasiparticles; it has two novel properties such as its strength is in proportion to the effective Fermi energy of quasiparticles and its temperature dependence is responsible for the Curie-Weiss law. When the Hund coupling JJ is strong enough, the superexchange interaction, which arises from the virtual exchange of pair excitations of electrons across the Mott-Hubbard gap, is ferromagnetic. In particular, it is definitely ferromagnetic for any nonzero J>0J>0 in the large limit of band multiplicity. Ferromagnetic instability occurs, when the sum of the two exchange interactions is ferromagnetic and it overcomes the quenching of magnetic moments by the Kondo effect or local quantum spin fluctuations and the suppression of magnetic instability by the mode-mode coupling among intersite spin fluctuations.Comment: 14 pages, 4 figure

    Iterative Perturbation Theory for Strongly Correlated Electron Systems with Orbital Degeneracy

    Get PDF
    A new scheme of the iterative perturbation theory is proposed for the strongly correlated electron systems with orbital degeneracy. The method is based on the modified self-energy of Yeyati, et al. which interpolates between the weak and the strong correlation limits, but a much simpler scheme is proposed which is useful in the case of the strong correlation with orbital degeneracy. It will be also useful in the study of the electronic structures combined with the band calculations.Comment: 6 pages, 3 Postscript figures, to appear in J. Phys. Cond. Matte

    A novel human hair protein fiber prepared by watery hybridization spinning

    Get PDF
    This is a preprint of an article published in [Hirao, Y; Ohkawa, K; Yamamoto, H; Fujii, T.,A novel human hair protein fiber prepared by watery hybridization spinning,MACROMOLECULAR MATERIALS AND ENGINEERING,Vol 290,165-171(2005)]ArticleMACROMOLECULAR MATERIALS AND ENGINEERING. 290(3): 165-171 (2005)journal articl
    corecore