1,341 research outputs found

    Field-Induced Quasiparticle Excitation in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2: Evidence for unconventional Superconductivity

    Full text link
    The temperature (TT) and magnetic field (HH) dependence of the magnetic penetration depth, λ(T,H)\lambda(T,H), in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2 exhibits significant deviation from that expected for conventional BCS superconductors. In particular, it is inferred from a field dependence of λ(H)\lambda(H) (H\propto H) at 2.0 K that the quasiparticle excitation is strongly enhanced by the Doppler shift. This suggests that the superconducting order parameter in Ca(Al0.5_{0.5}Si0.5_{0.5})2_2 is characterized by a small energy scale ΔS/kB2\Delta_S/k_B\le 2 K originating either from anisotropy or multi-gap structure.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Atomic Carbon and CO Isotope Emission in the Vicinity of DR15

    Get PDF
    We present observations of the 3P1-3P0 fine structure transition of atomic carbon [CI], the J=3-2 transition of CO, as well as of the J=1-0 transitions of 13CO and C18O toward DR15, an HII region associated with two mid-infrared dark clouds (IRDCs). The 13CO and C18O J=1-0 emissions closely follow the dark patches seen in optical wavelength, showing two self-gravitating molecular cores with masses of 2000 Msun and 900 Msun, respectively, at the positions of the catalogued IRDCs. Our data show a rough spatial correlation between [CI] and 13CO J=1-0. Bright [CI] emission occurs in relatively cold gas behind the molecular cores, neither in highly excited gas traced by CO J=3-2 emission nor in HII region/molecular cloud interface. These results are inconsistent with those predicted by standard photodissociation region (PDR) models, suggesting an origin for interstellar atomic carbon unrelated to photodissociation processes.Comment: 11 pages Latex, 6 figures, Accepted for publication in The Astrophysical Journa

    Observation of the first gravitational microlensing event in a sparse stellar field : the Tago event

    Full text link
    We report the observation of the first gravitational microlensing event in a sparse stellar field, involving the brightest (V=11.4 mag) andclosest (~ 1 kpc) source star to date. This event was discovered by an amateurastronomer, A. Tago, on 2006 October 31 as a transient brightening, by ~4.5 mag during a ~15 day period, of a normal A-type star (GSC 3656-1328) in the Cassiopeia constellation. Analysis of both spectroscopic observations and the light curve indicates that this event was caused by gravitational microlensing rather than an intrinsically variable star. Discovery of this single event over a 30 year period is roughly consistent with the expected microlensing rate for the whole sky down to V = 12 mag stars. However, the probability for finding events with such a high magnification (~ 50) is much smaller, by a factor ~1/50, which implies that the true event rate may be higher than expected. This discovery indicates the potential of all sky variability surveys, employing frequent sampling by telescopes with small apertures and wide fields of view, for finding such rare transient events, and using the observations to explore galactic disk structure and search for exo-planets.Comment: 13 pages, 2 tables, 3 figures, accepted by Ap

    Muonium as a shallow center in GaN

    Get PDF
    A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter was observed for the first time in single-crystalline GaN below 25 K. It has a highly anisotropic hyperfine structure with axial symmetry along the [0001] direction, suggesting that it is located either at a nitrogen-antibonding or a bond-centered site oriented parallel to the c-axis. Its small ionization energy (=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value) indicate that muonium in one of its possible sites produces a shallow state, raising the possibility that the analogous hydrogen center could be a source of n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter
    corecore