1,350 research outputs found
Production method of nickel electrode
A nickel electrode having improved charging efficiency, an increased coefficient of discharging utilization, and large capacity is disclosed. Nickel hydroxide or nickel oxide is retained in a porous nickel substrate which is immersed in an aqueous solution of cobalt acetate with a pH 4.0 to 6.8. The electrode thus obtained is then immersed in an alkaline solution or heated to change cobalt acetate into cobalt hydroxide or cobalt oxide whereby the surface of nickel active material is covered with cobalt crystals and alloying of cobalt and nickel is promoted at the same time
Resonance between Noise and Delay
We propose here a stochastic binary element whose transition rate depends on
its state at a fixed interval in the past. With this delayed stochastic
transition this is one of the simplest dynamical models under the influence of
``noise'' and ``delay''. We demonstrate numerically and analytically that we
can observe resonant phenomena between the oscillatory behavior due to noise
and that due to delay.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Lett Expanded and Added
Reference
Noise-induced dynamics in bistable systems with delay
Noise-induced dynamics of a prototypical bistable system with delayed
feedback is studied theoretically and numerically. For small noise and
magnitude of the feedback, the problem is reduced to the analysis of the
two-state model with transition rates depending on the earlier state of the
system. In this two-state approximation, we found analytical formulae for the
autocorrelation function, the power spectrum, and the linear response to a
periodic perturbation. They show very good agreement with direct numerical
simulations of the original Langevin equation. The power spectrum has a
pronounced peak at the frequency corresponding to the inverse delay time, whose
amplitude has a maximum at a certain noise level, thus demonstrating coherence
resonance. The linear response to the external periodic force also has maxima
at the frequencies corresponding to the inverse delay time and its harmonics.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
Competition between unconventional superconductivity and incommensurate antiferromagnetic order in CeRh1-xCoxIn5
Elastic neutron diffraction measurements were performed on the quasi-two
dimensional heavy fermion system CeRh1-xCoxIn5, ranging from an incommensurate
antiferromagnet for low x to an unconventional superconductor on the Co-rich
end of the phase diagram. We found that the superconductivity competes with the
incommensurate antiferromagnetic (AFM) order characterized by qI=(1/2, 1/2,
delta) with delta=0.298, while it coexists with the commensurate AFM order with
qc=(1/2, 1/2, 1/2). This is in sharp contrast to the CeRh1-xIrxIn5 system,
where both the commensurate and incommensurate magnetic orders coexist with the
superconductivity. These results reveal that particular areas on the Fermi
surface nested by qI play an active role in forming the superconducting state
in CeCoIn5.Comment: RevTeX4, 4 pages, 4 eps figures; corrected a typo and a referenc
Conservative Quantum Computing
Conservation laws limit the accuracy of physical implementations of
elementary quantum logic gates. If the computational basis is represented by a
component of spin and physical implementations obey the angular momentum
conservation law, any physically realizable unitary operators with size less
than n qubits cannot implement the controlled-NOT gate within the error
probability 1/(4n^2), where the size is defined as the total number of the
computational qubits and the ancilla qubits. An analogous limit for bosonic
ancillae is also obtained to show that the lower bound of the error probability
is inversely proportional to the average number of photons. Any set of
universal gates inevitably obeys a related limitation with error probability
O(1/n^2)$. To circumvent the above or related limitations yielded by
conservation laws, it is recommended that the computational basis should be
chosen as the one commuting with the additively conserved quantities.Comment: 5 pages, RevTex. Corrected to include a new statement that for
bosonic ancillae the lower bound of the error probability is inversely
proportional to the average number of photons, kindly suggested by Julio
Gea-Banacloch
Criticality and oscillatory behavior in non-Markovian Contact Process
A Non-Markovian generalization of one-dimensional Contact Process (CP) is
being introduced in which every particle has an age and will be annihilated at
its maximum age . There is an absorbing state phase transition which is
controlled by this parameter. The model can demonstrate oscillatory behavior in
its approach to the stationary state. These oscillations are also present in
the mean-field approximation which is a first-order differential equation with
time-delay. Studying dynamical critical exponents suggests that the model
belongs to the DP universlity class.Comment: 4 pages, 5 figures, to be published in Phys. Rev.
Group Chase and Escape
We describe here a new concept of one group chasing another, called "group
chase and escape", by presenting a simple model. We will show that even a
simple model can demonstrate rather rich and complex behavior. In particular,
there are cases in which an optimal number of chasers exists for a given number
of escapees (or targets) to minimize the cost of catching all targets. We have
also found an indication of self-organized spatial structures formed by both
groups.Comment: 13 pages, 12 figures, accepted and to appear in New Journal of
Physic
Conservation laws, uncertainty relations, and quantum limits of measurements
The uncertainty relation between the noise operator and the conserved
quantity leads to a bound for the accuracy of general measurements. The bound
extends the assertion by Wigner, Araki, and Yanase that conservation laws limit
the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general
measurements, and improves the one previously obtained by Yanase for spin
measurements. The bound also sets an obstacle to making a small quantum
computer.Comment: 4 pages, RevTex, to appear in PR
On-chip quantum interference between silicon photon-pair sources
Large-scale integrated quantum photonic technologies1, 2 will require on-chip integration of identical photon sources with reconfigurable waveguide circuits. Relatively complex quantum circuits have been demonstrated already1, 2, 3, 4, 5, 6, 7, but few studies acknowledge the pressing need to integrate photon sources and waveguide circuits together on-chip8, 9. A key step towards such large-scale quantum technologies is the integration of just two individual photon sources within a waveguide circuit, and the demonstration of high-visibility quantum interference between them. Here, we report a silicon-on-insulator device that combines two four-wave mixing sources in an interferometer with a reconfigurable phase shifter. We configured the device to create and manipulate two-colour (non-degenerate) or same-colour (degenerate) path-entangled or path-unentangled photon pairs. We observed up to 100.0 ± 0.4% visibility quantum interference on-chip, and up to 95 ± 4% off-chip. Our device removes the need for external photon sources, provides a path to increasing the complexity of quantum photonic circuits and is a first step towards fully integrated quantum technologies
- …