103 research outputs found
マイクロ フォーカス エックスセン シーティー ヲ モチイタ シカン ホテツ ソウチ ノ サンジゲンテキ テキゴウ ヒョウカホウ ノ カイハツ
Reversed-shear Alfv?n eigenmodes were observed for the first time in a helical plasma having negative q0′′ (the curvature of the safety factor q at the zero shear layer). The frequency is swept downward and upward sequentially via the time variation in the maximum of q. The eigenmodes calculated by ideal MHD theory are consistent with the experimental data. The frequency sweeping is mainly determined by the effects of energetic ions and the bulk pressure gradient. Coupling of reversed-shear Alfv?n eigenmodes with energetic ion driven geodesic acoustic modes generates a multitude of frequency-sweeping modes
Observations of sustained phase shifted magnetic islands from externally imposed m/n = 1/1 RMP in LHD
New observations in the Large Helical Device (LHD) show that the magnetic islands externally imposed by m/n = 1/1 resonant magnetic perturbation (RMP) can be maintained in an intermediate state with a finite phase shift away from the value present in vacuum. Given the previous experimental observation that the saturated magnetic islands show either growth or healing, the intermediate states are realized in the “healing region” in the beta and collisionality space, which implies that a parameter other than beta and collisionality should exist in order to determine the island state. Theories based on the competition between electromagnetic torques and poloidal flow-induced viscous torques provide a prediction for the intermediate state. These two types of torques might be balanced to realize the steadily maintained intermediate state whereas the islands are placed in the growth state or healing state in the case in which the balance is broken. The experimental observation shows that there is a possibility for the magnetic island phase to deviate from its designed position. If the parameters are controlled properly, it is possible to control the phase of the magnetic island, which may permit continued utilization of the island divertor concept
ヨウリョクタイガタ フェレドキシン ノ コウゾウ カイセキ 2.8Å ブンカイノウ
Remarkable progress in the physical parameters of net-current free plasmas has been made in the Large Helical Device (LHD) since the last Fusion Energy Conference in Chengdu, 2006 (O.Motojima et al., Nucl. Fusion 47 (2007) S668). The beta value reached 5 % and a high beta state beyond 4.5% from the diamagnetic measurement has been maintained for longer than 100 times the energy confinement time. The density and temperature regimes also have been extended. The central density has exceeded 1.0 x 10^21 m^-3 due to the formation of an Internal Diffusion Barrier (IDB). The ion temperature has reached 6.8 keV at the density of 2 x 10^19m^-3, which is associated with the suppression of ion heat conduction loss. Although these parameters have been obtained in separated discharges, each fusion-reactor relevant parameter has elucidated the potential of net-current free heliotron plasmas. Diversified studies in recent LHD experiments are reviewed in this paper
Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device
The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ~ Te(0) ~ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m−3 and with high electron and ion temperatures (Ti(0) ~ Te(0) ~ 2 keV), resulting in 3.36 GJ of input energy, is achieved
- …