415 research outputs found

    About Adaptive Coding on Countable Alphabets: Max-Stable Envelope Classes

    Full text link
    In this paper, we study the problem of lossless universal source coding for stationary memoryless sources on countably infinite alphabets. This task is generally not achievable without restricting the class of sources over which universality is desired. Building on our prior work, we propose natural families of sources characterized by a common dominating envelope. We particularly emphasize the notion of adaptivity, which is the ability to perform as well as an oracle knowing the envelope, without actually knowing it. This is closely related to the notion of hierarchical universal source coding, but with the important difference that families of envelope classes are not discretely indexed and not necessarily nested. Our contribution is to extend the classes of envelopes over which adaptive universal source coding is possible, namely by including max-stable (heavy-tailed) envelopes which are excellent models in many applications, such as natural language modeling. We derive a minimax lower bound on the redundancy of any code on such envelope classes, including an oracle that knows the envelope. We then propose a constructive code that does not use knowledge of the envelope. The code is computationally efficient and is structured to use an {E}xpanding {T}hreshold for {A}uto-{C}ensoring, and we therefore dub it the \textsc{ETAC}-code. We prove that the \textsc{ETAC}-code achieves the lower bound on the minimax redundancy within a factor logarithmic in the sequence length, and can be therefore qualified as a near-adaptive code over families of heavy-tailed envelopes. For finite and light-tailed envelopes the penalty is even less, and the same code follows closely previous results that explicitly made the light-tailed assumption. Our technical results are founded on methods from regular variation theory and concentration of measure

    Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Get PDF
    BACKGROUND: Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. METHODS: Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. RESULTS: In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. CONCLUSIONS: We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

    Induced Model Matching: How Restricted Models Can Help Larger Ones

    Full text link
    We consider scenarios where a very accurate predictive model using restricted features is available at the time of training of a larger, full-featured, model. This restricted model may be thought of as "side-information", derived either from an auxiliary exhaustive dataset or on the same dataset, by forcing the restriction. How can the restricted model be useful to the full model? We propose an approach for transferring the knowledge of the restricted model to the full model, by aligning the full model's context-restricted performance with that of the restricted model's. We call this methodology Induced Model Matching (IMM) and first illustrate its general applicability by using logistic regression as a toy example. We then explore IMM's use in language modeling, the application that initially inspired it, and where it offers an explicit foundation in contrast to the implicit use of restricted models in techniques such as noising. We demonstrate the methodology on both LSTM and transformer full models, using NN-grams as restricted models. To further illustrate the potential of the principle whenever it is much cheaper to collect restricted rather than full information, we conclude with a simple RL example where POMDP policies can improve learned MDP policies via IMM

    Large alphabets: Finite, infinite, and scaling models

    Get PDF
    How can we effectively model situations with large alphabets? On a pragmatic level, any engineered system, be it for inference, communication, or encryption, requires working with a finite number of symbols. Therefore, the most straight-forward model is a finite alphabet. However, to emphasize the disproportionate size of the alphabet, one may want to compare its finite size with the length of data at hand. More generally, this gives rise to scaling models that strive to capture regimes of operation where one anticipates such imbalance. Large alphabets may also be idealized as infinite. The caveat then is that such generality strips away many of the convenient machinery of finite settings. However, some of it may be salvaged by refocusing the tasks of interest, such as by moving from sequence to pattern compression, or by minimally restricting the classes of infinite models, such as via tail properties. In this paper we present an overview of models for large alphabets, some recent results, and possible directions in this area

    Rare Probability Estimation under Regularly Varying Heavy Tails

    Get PDF
    This paper studies the problem of estimating the probability of symbols that have occurred very rarely, in samples drawn independently from an unknown, possibly infinite, discrete distribution. In particular, we study the multiplicative consistency of estimators, defined as the ratio of the estimate to the true quantity converging to one. We first show that the classical Good-Turing estimator is not universally consistent in this sense, despite enjoying favorable additive properties. We then use Karamata's theory of regular variation to prove that regularly varying heavy tails are sufficient for consistency. At the core of this result is a multiplicative concentration that we establish both by extending the McAllester-Ortiz additive concentration for the missing mass to all rare probabilities and by exploiting regular variation. We also derive a family of estimators which, in addition to being consistent, address some of the shortcomings of the Good-Turing estimator. For example, they perform smoothing implicitly and have the absolute discounting structure of many heuristic algorithms. This also establishes a discrete parallel to extreme value theory, and many of the techniques therein can be adapted to the framework that we set forth.National Science Foundation (U.S.) (Grant 6922470)United States. Office of Naval Research (Grant 6918937

    Modeling Access Differences to Reduce Disparity in Resource Allocation

    Full text link
    Motivated by COVID-19 vaccine allocation, where vulnerable subpopulations are simultaneously more impacted in terms of health and more disadvantaged in terms of access to the vaccine, we formalize and study the problem of resource allocation when there are inherent access differences that correlate with advantage and disadvantage. We identify reducing resource disparity as a key goal in this context and show its role as a proxy to more nuanced downstream impacts. We develop a concrete access model that helps quantify how a given allocation translates to resource flow for the advantaged vs. the disadvantaged, based on the access gap between them. We then provide a methodology for access-aware allocation. Intuitively, the resulting allocation leverages more vaccines in locations with higher vulnerable populations to mitigate the access gap and reduce overall disparity. Surprisingly, knowledge of the access gap is often not needed to perform access-aware allocation. To support this formalism, we provide empirical evidence for our access model and show that access-aware allocation can significantly reduce resource disparity and thus improve downstream outcomes. We demonstrate this at various scales, including at county, state, national, and global levels.Comment: Association for Computing Machinery (2022
    corecore