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Abstract—How can we effectively model situations with large
alphabets? On a pragmatic level, any engineered system, be it
for inference, communication, or encryption, requires working
with a finite number of symbols. Therefore, the most straight-
forward model is a finite alphabet. However, to emphasize the
disproportionate size of the alphabet, one may want to compare
its finite size with the length of data at hand. More generally,
this gives rise to scaling models that strive to capture regimes of
operation where one anticipates such imbalance. Large alphabets
may also be idealized as infinite. The caveat then is that such
generality strips away many of the convenient machinery of finite
settings. However, some of it may be salvaged by refocusing the
tasks of interest, such as by moving from sequence to pattern
compression, or by minimally restricting the classes of infinite
models, such as via tail properties. In this paper we present an
overview of models for large alphabets, some recent results, and
possible directions in this area.

I. INTRODUCTION

As a probabilistic model of discrete data, we can often
use a source (A, p) defined as an at most countable set A
which we call the alphabet, of size denoted by m = |A|, and
a probability distribution p on all finite n-length sequences
xn := x1x2 · · ·xn ∈ An. We will concern ourselves mostly
with stationary memoryless sources, or independent and iden-
tically distributed sequences. In this case, with a slight abuse of
notation, we let p be a probability distribution on A, and let the
sequence probabilities be described by the product distribution
p(xn) =

∏n
i=1 p(xi).

Such models are successfully employed with real world
data, be it for file compression, encryption, or text classifica-
tion. Most of the theory is built based on the assumption that
in any pragmatic context the alphabet A must be finite. This
leads to an array of powerful and elegant results in universal
compression, entropy estimation, and statistical learning, to
name a few. Yet, despite the fact that it is true that any
engineered system has to operate with finitely many symbols,
one is often faced with situations where the alphabet size is
large, so large in fact that some of the asymptotic bounds
given by theory do not apply in particular instances. One is
then faced with the question: how can we effectively model
situations with large alphabets?

Notation: Throughout the paper, we use the notation f ∼ g
to mean f/g → 1. We also use the subscripts p and a.s. to in-
dicate in probability and almost sure convergence respectively,
when quantities are random.

II. FINITE MODELS AND ENTROPY ESTIMATION

The simplest model for a large alphabet is one with finitely
many elements, i.e. m < ∞. The qualifier ‘large’ is meaning-
ful only in a relative sense. Whether the alphabet is too large
will often depend on a specific task. Moreover, what is large
for a given sequence length n might not be so with an order of
magnitude more data. Lastly, if p places very little probability
on a vast number of symbols, such a source may have a
large alphabet technically, but may be indistinguishable from
a smaller alphabet source for the given number of samples.

To account for those various nuisances in assessing the size
of the alphabet, the natural approach is to restrict some, and
vary others. A common perspective is to fix the task, and assess
performance universally over classes of finite sources (A, p)
defined in terms of a compromise between n and m. Given
a non-decreasing function g : N → N , we can write such a
compromise abstractly as a class of finite sources indexed by
sample size:

S (g(n)) = {(A, p) : |A| = m ≤ g(n)} .

We illustrate this with some prior work for the task of
entropy estimation.

A. Alphabet Size Linear in the Sequence Length

In the context of neuroscience, mutual information esti-
mation with continuous distributions can be performed via
discretization. The question is, how finely can one discretize,
i.e. how large can the alphabet be, yet permit consistent
estimation of the entropy? In [1], Paninski considered the class
of sources, for γ > 0:

S(γn) = {(A, p) : m ≤ γn} ,

which directly encodes a linear relationship between the
alphabet size and the number of samples. He then showed,
non-constructively, that there exists a single estimator Ĥn for
the entropy H(p), such that for any fixed γ > 0, as n → ∞
(rewording [1], Theorem 1):

sup
(A,p)∈S(γn)

E

[(
Ĥn −H(p)

)2
]
→ 0. (1)
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B. Alphabet Size Super-Linear in the Sequence Length

As a corollary to this uniform consistency result, Paninski
also showed ([1], Corollary 2) that there exists a sequence
γn → ∞, such that the convergence of (1) holds uniformly
over the larger class S(γnn). However, γn cannot be Ω(nα)
for any α > 0.

In [2], Valiant and Valiant proposed a tighter characteriza-
tion, showing that, one could essentially choose any γn =
o(logn). Their original result can be written as follows (by
rewording [2], Proposition 1). Given the class:

S(δn log n) = {(A, p) : m ≤ δn log n} ,

there exists an estimator Ĥn for the entropy, and a function
h(δ) that is O(

√
δ| log δ|) as δ → 0, such that if ϵ > h(δ)

then:

sup
(A,p)∈S(δn log n)

P
{∣∣∣Ĥn −H(p)

∣∣∣ > ϵ
}
≤ e−n0.04

. (2)

In [2], this base result is recast as a sample complexity
statement, that is: for a given ϵ, how large of a sequence length
n is it sufficient to have, as a function of m and ϵ, in order
to approximate entropy to within ϵ with high probability.

Here, we instead place Equation (2) in a form that is more
directly comparable with the consistency result of Equation
(1). In particular, for δn ↓ 0, no matter how slowly, we have
that for all ϵ > 0, as n → ∞:

sup
(A,p)∈S(δnn log n)

P
{∣∣∣Ĥn −H(p)

∣∣∣ > ϵ
}
→ 0.

This reinterpretation shows that Equation (1) is paralleled for
δn = γ/ log(n). However, we have more leeway, e.g. by
choosing δn = 1/ log log(n), or any δn = o(1).

Valiant and Valiant also establish an effective lower bound
([2], Corollary 2), that suggests that this γn = o(logn) rate
is tight. Furthermore, their approach works for more general
functionals of the distribution, as long as they are symmetric
with respect to relabeling, and continuous with respect to a
metric (technically on the multiset of, or sorted, probabilities)
that they refer to as relative earthmover distance, defined as:

R(p, q) =

sup
f :|f ′(x)|≤1/x

∣∣∣ ∑
a∈A

p(a)f(p(a))−
∑
a∈A

q(a)f(q(a))
∣∣∣.

Shannon entropy is a special case, it corresponds to one of
the sums with f(x) = − log(x), which satisfies |f ′(x)| ≤ 1/x.
Therefore, we immediately have the (Lipschitz) continuity
|H(p)−H(q)| ≤ R(p, q).

III. SCALING MODELS

Finite models for large alphabets, such as the ones we
presented, and which are described as uniform consistency
over classes of finite sources are adequate for directly cap-
turing alphabet size versus sample size compromises. They
do not place any other constraints on the source, and do
not allow statements for particular sample sequences. To
extend such characterizations, one can use models that achieve

description of large alphabets by a sequential scaling, similarly
to Kolmogorov asymptotics in high-dimensional statistics.

We define a scaling model as a sequence of sources:

{(An, pn)}n=1,2,···,

in addition to a property of the sequence. It is understood that
the sample sequence of length n is drawn from pn. We denote
this random sequence by Xn,1 · · ·Xn,n. The property may be
defined as pointwise constraints, as in the finite models, but
may more generally be a sequential property.

To illustrate some of the benefits of this perspective, let us
simply use the pointwise constraint (An, pn) ∈ S(n log log n).
By (2), it follows that for any ϵ > 0, we have a summable
convergence in probability, and therefore by the Borel-Cantelli
lemma, we have: ∣∣∣Ĥn −H(pn)

∣∣∣ →a.s. 0, (3)

which is a statement that is less elegant to formalize outside
of the scaling framework. Furthermore, this shows that finite
models are subsumed by scaling models. We can indeed think
of a scaling model as defining an appropriate probability space
using a sequence of classes of finite sources, as suggested for
example in [1].

A. Rare-Events Sources
More generally, it is convenient to work with scaling models

directly and to use sequential properties. This is done notably
by Wagner, Viswanath, and Kulkarni, whom we refer to as
WVK henceforth, in [3]. Let Pn be the law of npn(Xn,1), i.e.
the following probability measure on R+:

Pn(dx) =
∑
a∈An

pn(a)δnpn(a)(dx), (4)

where δx is a Dirac delta at x. WVK call this measure the
‘shadow’, and they define a rare-events source as a scaling
model where the shadows converge weakly:

Pn ⇒ P, (5)

for some probability measure P on R+.
This definition focuses on the probability distributions pn.

Unlike finite models and the example we gave (preceding
Equation (3)) that uses a finite model as a constraint, this
scaling model construction does not impose that every alphabet
An be finite. Yet, the weak convergence of Equation (5) does
capture a situation where the effective alphabet size, where
most symbols lie, is roughly linear in the sample size. We
make this precise in the following proposition.

Proposition 1. Consider a rare-events source {(An, pn)} with
limiting distribution P such that P (0) = 0. Then for any
choice of čn ↓ 0 and of ĉn ↑ ∞, the subsets Bn = {a ∈ An :
čn ≤ npn(a) ≤ ĉn} are an effective alphabet, in that:

pn(Bn) → 1.

Furthermore, we have that

o(n) =
npn(Bn)

ĉn
≤ |Bn| ≤

npn(Bn)

čn
= ω(n).



Proof: Let Dn = {a ∈ An : npn(a) < čn}. Choose
ϵ > 0, and find n0 such that for all n > n0, čn < ϵ. It follows
that for all n > n0:

pn(Dn) ≤
∫ ϵ

0

dPn.

Therefore lim supn→∞ pn(Dn) ≤
∫ ϵ

0
dP , and since ϵ was

arbitrary, pn(Dn) → 0. A similar argument shows that
pn ({a ∈ An : npn(a) > ĉn}) → 0. The bounds on the car-
dinality of Bn are straightforward.

The fact that all the symbols in this effective alphabet have
probability roughly on the order of 1

n justifies the name ‘rare-
events’.

B. Rare Probability Estimation

WVK showed that in the regime of a rare-events source one
can consistently estimate the total probabilities of rare events.
To make this more precise, denote by Bn,r the subsets of the
alphabet of symbols that appear exactly r times in the sample
sequence. In general, we think of r as much smaller than the
sample size n, but in the rare-events regime this is true for
all r. Note that the case r = 0 corresponds to the subset of
symbols which do not appear in the sequence. We then define
the rare probabilities as:

Mn,r := pn(Bn,r).

In particular, Mn,0 denotes the missing mass, the probability
of unseen symbols. The estimation of Mn,r is sometimes
called the Good-Turing estimation problem, in reference to
the pioneering work of [4], who gives due credit to Turing.
Their solution to this estimation problem, the Good-Turing
estimator, is:

Gn,r :=
(r + 1)Kn,r+1

n
, (6)

where Kn,r := |Bn,r| is the number of distinct symbols
appearing exactly r times in the sample. The study of the
numbers Kn,r themselves, and the number Kn :=

∑
r≥1 Kn,r

is known as the occupancy problem, in reference to the
classical urn schemes.

In the rare events regime, WVK show in [3] that both Mn,r

and Gn,r satisfy the same Poisson limit, in a strong sense:

Mn,r ∼a.s. Gn,r ∼a.s.

∫
R+

xre−x

r!
dP (x). (7)

In fact, L1 convergence also follows. This behavior is par-
ticularly interesting, considering that the empirical distribution
does not converge in the same way as it does in the finite
setting. However, the restriction to particular subsets Bn,r

essentially regularizes the problem, and makes results such
as (7) possible.

C. Entropy and General Functional Estimation

Using simply the weak convergence constraint of Equation
(5), entropy estimation is rather ill-posed because of very
small probabilities. To remedy the problem, and in light of

Proposition 1, WVK further constrain the rare-events source
to satisfy, for all n:

č ≤ npn(An) ≤ ĉ, (8)

where č and ĉ are unknown constants. These constraints place
the scaling model closer to the finite setting, since it follows
that:

n

ĉ
≤ |An| ≤

n

č
. (9)

WVK give an explicit construction of entropy in this par-
ticular framework, using the strong consistency of the Good-
Turing estimates, and appropriate power series expansions.

In [5], we showed that it is possible to use the Good-Turing
estimator differently, by casting it as a pseudo-empirical mea-
sure issued from the Poisson mixture of Equation (7). We can
then use mixing density estimation techniques to construct a
measure:

P̃n(Xn,1 · · ·Xn,n) ⇒a.s. P.

This in itself is sufficient for estimating bounded continuous
functionals of the form:

Yn :=

∫
f(x) dPn(x),

which converges to
∫
f(x) dP (x) by weak convergence. If

the functional is generally unbounded, but bounded on [č, ĉ]
in the restricted model of Equation (8), then if a bound D is
known for the interval, as in [č, ĉ] ⊂ D, then estimation can
be performed by tapering f :

fD(x) ≡

 f(D−1) x < D−1,
f(x) x ∈ [D−1, D],
f(D) x > D.

More precisely, ([5], Lemma 2):

Proposition 2. If P̃n ⇒a.s. P as n → ∞ and [č, ĉ] ⊂ D, then

Ŷn :=

∫
R+

fD(x)dP̃n(x)

in a consistent estimator of Yn, in the sense that∣∣∣Ŷn − Yn

∣∣∣ →a.s. 0.

For example, entropy is of the form:

H(pn) =

∫
− log (x) dPn(x) + log n,

and since the logn term is deterministic, we can apply Propo-
sition 2 to estimate entropy consistently, given a construction
of P̃n and a bound D. When the functional is generally
unbounded, and no bounds are known for [č, ĉ], then estimation
is still possible in this framework provided that we can
characterize the rate of the convergence P̃n ⇒ P , say in terms
of the Wasserstein metric.

Lastly, it is worth noting that we can also relate this
scaling framework to the finite setting, as suggested by (9).
In particular, we can once again use the Valiant and Valiant
estimator leading to Equation (2), in order to obtain the same
consistency result as in Equation (3).



IV. UNIVERSAL COMPRESSION AND RARE
PROBABILITY ESTIMATION IN INFINITE MODELS

It is also possible to idealize large alphabets as being
infinite, but fixed. We first consider the problem of universal
compression in this setting, and then outline some results in
the related problem of probability estimation.

We recall the relevant definitions in universal compression.
The worst case redundancy for n-length sequences over a class
S of memoryless sources is defined as:

R(n,S) = inf
q

sup
(A,p)∈S

sup
xn∈An

log
p(xn)

q(xn)
,

which quantifies within how many nats any single algorithm
can compress a source in S, as compared to the compression
of an algorithm designed with exact knowledge of the source.
If, as n → ∞,

1

n
R(n,S) → 0,

we say that the per-symbol redundancy vanishes, which is the
notion of universality that we seek: the source is asymptoti-
cally compressed as though it were known.

When the alphabet size is bounded, universality is immedi-
ate. But for infinite sources without further constraints, there
are many negative results that have stymied research in this
area. In particular, in [6], Kieffer defined a weaker notion
of universality, which he showed not to hold for general
stationary and ergodic sources. Weak universality was later
shown to fail even for memoryless sources by Györfi, Páli
and van der Meulen in [7]. This means that, for general S, we
cannot expect to have vanishing per-symbol redundancy.

A. Universal Compression of Patterns

In [8], Orlitsky, Santhanam, and Zhang, whom we refer to
as OSZ henceforth, recover universality results by shifting at-
tention from the compression of sequences to the compression
of patterns. More precisely, given a sequence xn = x1 · · ·xn,
we define its pattern to be a sequence of positive integers:

Ψ(xn) = ι(x1) · · · ι(xn),

where ι(·) is a sequence-dependent function that maps each
symbol of the alphabet that appeared in the sequence to its
index of first appearance.

In analogy to the sequence case, we can define the worst
case redundancy for n-length patterns over a class S of
memoryless sources as:

RΨ(n,S) = inf
q

sup
(A,p)∈S

sup
xn∈An

log
p(Ψ(xn))

q(Ψ(xn))
,

where we have restricted our attention on the induced proba-
bility over patterns. To emphasize the symmetry over Ψ, it
is possible to write this redundancy after transforming all
quantities to pattern-specific form, as is done in [8]. The
surprising result of OSZ was that, without further restrictions
on S, one has vanishing per-symbol pattern redundancy:

1

n
RΨ(n,S) → 0,

for any S, even with alphabets that are infinite. Furthermore,
it is possible to achieve this in a computationally efficient
manner, albeit at a suboptimal rate.

It is worth drawing some parallels with probability esti-
mation in the rare-events regime. Indeed, the work of WVK
was spawned by questions arising from OSZ. In particular, the
type or empirical measure does not converge in the rare-events
regime, which is tantamount to the impossibility results in
universal compression. Yet, when attention is restricted to the
probability of the subsets Bn,r, consistent estimation becomes
possible, as evidenced by Equation (7). Indeed, the occupancy
numbers Kn,r = |Bn,r|, each referred to as the prevalence of
multiplicity r, and collectively as the profile of the pattern in
[8], are intimately related to the pattern itself. In particular any
two patterns with the same profile have the same probability,
just as any two sequences with the same type do.

B. Universal Compression with Tail Properties

Although universal compression of sequences is not possible
for general infinite alphabets, it is possible to restrict S and
obtain universality within the restricted class. Kieffer [6] gives
certain conditions for weak universality. More recently, in
[9], Boucheron, Garivier, and Gassiat studied universal com-
pression over classes of infinite sources defined by envelope
conditions. These conditions effectively model tail behavior.
Of particular interest is the result of vanishing per-symbol
redundancy for power-law and exponential tails. We do not
elaborate on their results, but rather use it as prelude to the
following section.

C. Rare Probability Estimation with Heavy-Tails
In the scaling model of the rare-events sources proposed

by WVK, we have seen that the rare probability estimation
problem is strongly consistent,by Equation (7), and this is
in fact achieved by the Good-Turing estimator of (6). The
question we ask is therefore, given a fixed arbitrary (possibly
infinite-alphabet) source (A, p) from a class S, when is it
possible to estimate the rare probabilities Mn,r consistently?

It is important to note that for a fixed source, E[Mn,r] →a.s.

0, for fixed r ≥ 0, thus Mn,r →p 0 and talking about
consistency using additive error is not meaningful. Therefore
we define consistency multiplicatively. We call an estimator
M̂n,r strongly consistent over a class S of sources, if for every
(A, p) ∈ S:

M̂n,r ∼ Mn,r, as n → ∞.

where the convergence is either in probability or almost surely.

Such strong consistency is not to be taken for granted. In
fact, despite the various additive error and concentration re-
sults, such as [10], [11], [12], [13], the Good-Turing estimator
is not strongly consistent over arbitrary classes of sources S. In
particular, we show in [14] (Lemma 3.2) that Gn,0, the missing
mass estimator, is not strongly consistent even for a geometric
distribution. This is perhaps related to the redundancy gap that
is observed in the work of OSZ, when using predictors based
on the Good-Turing estimator.



Going back to the task of identifying sufficient conditions
for estimating rare probabilities, we focus on characterizing
classes of distributions S based on a tail property. We use
Karamata’s theory of regular variation [15], suggested origi-
nally by Karlin [16]. We first introduce the following counting
measure on [0, 1], using the notation of [17]:

ν(dx) :=
∑
a∈A

δp(a)(dx).

(An almost identical function is referred to as the ‘histogram
of a distribution’ in [2], and it is also related to the ‘shadow’
of Equation (4)). Using ν, we define the following function,
which is a cumulative count of all symbols having no less than
a certain probability mass:

ν⃗(x) := ν[x, 1].

Definition. Following [16], we say that (A, p) is regularly
varying with regular variation index α ∈ (0, 1), if the following
holds:

ν⃗(x) ∼ x−αℓ(1/x), as x ↓ 0,

where ℓ(t) is a slowly varying function, in the sense that for
all c > 0, ℓ(ct) ∼ ℓ(t) as t → ∞.

This definition can be extended to the cases of α = 0 and
α = 1, as is done in [17] for example. Regular variation is
thus an elegant way of describing tail regularity in discrete
distributions. For the case α ∈ (0, 1), it captures the heavy-
tailed property rather generally, without restriction to pure
power laws such as the Zipf-Mandelbrot distributions. Let’s
denote the collection of all such regularly varying heavy-
tailed distributions by SRV. We then have the following result
(reworded from [14], Theorem 3.15):

Proposition 3. For any (A, p) in SRV, the Good-Turing
estimator is strongly consistent:

Gn,r ∼a.s. Mn,r, as n → ∞.

Proof: The proof relies on a new multiplicative concentra-
tion result under regularly varying heavy tails ([14], Theorem
3.13), from which one can deduce strong laws for the rare
probabilities: Mn,r ∼a.s. E[Mn,r]. It is easy to show that (and
is in fact the basis of the Good-Turing estimator that):

E[Mn,r] =
r + 1

n+ 1
E[Kn+1,r+1].

Compounding these with Karlin’s (see [16] and [17]) strong
laws for the occupancy numbers, which establish that
Kn,r ∼a.s. E[Kn,r] and E[Kn,r] ∼ E[Kn+1,r], the strong
consistency result follows.

It is interesting that heavy-tailed sources are natural models
for both infinite alphabet universal compression and rare event
probability estimation. After identifying SRV as a sufficient
regime in which strongly consistent rare probability estimation
is possible, one can develop estimators that go beyond that
of Good and Turing, as we do in [14]. In particular, regular
variation opens the platform to techniques from extreme value
theory (see [18]), which have been successfully used in rare
event estimation in continuous settings.

V. CONCLUSION

In this paper we surveyed various approaches (by no means
exhaustive) to modeling large alphabets, striving to present
them from a single vantage point. We highlighted particular
estimation and communication problems, and showed three
main modeling paradigms: finite, scaling, and infinite.

What would be arguably most useful is a clear understand-
ing and encoding of the various compromises that are at play:
the task, the sample size, the size of the alphabet if it is finite,
or distribution tail properties if it is infinite. A potentially
fruitful approach would be to mutually map various large
alphabet models, show whether statements for certain tasks are
necessary or sufficient for others as well, and develop efficient
algorithms for simultaneous large data and alphabet regimes.

The importance of relating these various models is in clar-
ifying the fundamental limits of the very pragmatic question
of how much one can do when working with alphabets that
are disproportionate in size to data.
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