383 research outputs found

    Magnetic properties of vanadium-oxide nanotubes probed by static magnetization and {51}V NMR

    Full text link
    Measurements of the static magnetic susceptibility and of the nuclear magnetic resonance of multiwalled vanadium-oxide nanotubes are reported. In this nanoscale magnet the structural low-dimensionality and mixed valency of vanadium ions yield a complex temperature dependence of the static magnetization and the nuclear relaxation rates. Analysis of the different contributions to the magnetism allows to identify individual interlayer magnetic sites as well as strongly antiferromagnetically coupled vanadium spins (S = 1/2) in the double layers of the nanotube's wall. In particular, the data give strong indications that in the structurally well-defined vanadium-spin chains in the walls, owing to an inhomogeneous charge distribution, antiferromagnetic dimers and trimers occur. Altogether, about 30% of the vanadium ions are coupled in dimers, exhibiting a spin gap of the order of 700 K, the other ~ 30% comprise individual spins and trimers, whereas the remaining \~ 40% are nonmagnetic.Comment: revised versio

    Zigzag Charge Ordering in alpha'-NaV2O5

    Full text link
    23Na NMR spectrum measurements in alpha'-NaV2O5 with a single- crystalline sample are reported. In the charge-ordered phase, the number of inequivalent Na sites observed is more than that expected from the low-temperature structures of space group Fmm2 reported so far. This disagreement indicates that the real structure including both atomic displacement and charge disproportionation is of lower symmetry. It is suggested that zigzag ordering is the most probable. The temperature variation of the NMR spectra near the transition temperature is incompatible with that of second-order transitions. It is thus concluded that the charge ordering transition is first-order.Comment: 4 pages, 5 eps figures, submitted to J. Phys. Soc. Jp

    X-ray anomalous scattering investigations on the charge order in α\alpha^\prime-NaV2_2O5_5

    Full text link
    Anomalous x-ray diffraction studies show that the charge ordering in α\alpha^\prime-NaV2_2O5_5 is of zig-zag type in all vanadium ladders. We have found that there are two models of the stacking of layers along \emph{c-}direction, each of them consisting of 2 degenerated patterns, and that the experimental data is well reproduced if the 2 patterns appears simultaneously. We believe that the low temperature structure contains stacking faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the tex

    Low-Temperature Structure of the Quarter-Filled Ladder Compound alpha'-NaV2O5

    Full text link
    The low-temperature (LT) superstructure of α\alpha'-NaV2_2O5_5 was determined by synchrotron radiation x-ray diffraction. Below the phase transition temperature associated with atomic displacement and charge ordering at 34K, we observed the Bragg peak splittings, which evidence that the LT structure is monoclinic. It was determined that the LT structure is (ab)×2b×4c(a-b)\times 2b \times 4c with the space group A112A112 where a,ba, b and cc represent the high temperature orthorhombic unit cell. The valence estimation of V ions according to the bond valence sum method shows that the V sites are clearly separated into two groups of V4+^{4+} and V5+^{5+} with a zigzagzigzag charge ordering pattern. This LT structure is consistent with resonant x-ray and NMR measurements, and strikingly contrasts to the LT structure previously reported, which includes V4.5+^{4.5+} sites.Comment: 4 pages, 3 figures, 1 tabl

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    NaV_2O_5 as an Anisotropic t-J Ladder at Quarter Filling

    Full text link
    Based on recent experimental evidences that the electronic charge degrees of freedom plays an essential role in the spin-Peierls--like phase transition of NaV2_2O5_5, we first make the mapping of low-energy electronic states of the dd-pp model for NaV2_2O5_5 to the quarter-filled tt-JJ ladder with anisotropic parameter values between legs and rungs, and then show that this anisotropic tt-JJ ladder is in the Mott insulating state, of which lowest-energy states can be modeled by the one-dimensional Heisenberg antiferromagnet with the effective exchange interaction JeffJ_{eff} whose value is consistent with experimental estimates. We furthermore examine the coupling between the ladders as the trellis lattice model and show that the nearest-neighbor Coulomb repulsion on the zigzag-chain bonds can lead to the instability in the charge degrees of freedom of the ladders.Comment: 4 pages, 5 gif figures. Fig.3 corrected. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]
    corecore