487 research outputs found

    Three-dimensional unstructured grid method applied to turbomachinery

    Get PDF
    This work has three objectives: to develop a three-dimensional flow solver based on unstructured tetrahedral meshes for turbomachinery flows; to validate the solver through comparisons with experimental data; and to apply the solver for better understanding of the flow through turbomachinery geometries and design improvement. The work followed three different approaches: an existing external flow solver/grid generator (USM3D/VGRID) was extensively modified for internal flows; a three-dimensional, finite-volume solver based on Roe's flux-difference splitting and explicit Runge-Kutta time stepping; and three-dimensional unstructured tetrahedral mesh generation using an advancing-front technique. A discussion of these topics is presented in viewgraph form

    Predicting wind turbine blade loads using vorticity transport and RANS methodologies

    Get PDF
    Two computational methods, one based on the solution of the vorticity transport equation, and a second based on the solution of the Reynolds-Averaged Navier-Stokes equations, have been used to simulate the aerodynamic performance of a horizontal axis wind turbine. Comparisons have been made against data obtained during Phase VI of the NREL Unsteady Aerodynamics Experimental and against existing numerical data for a range of wind conditions. The Reynolds-Averaged Navier-Stokes method demonstrates the potential to predict accurately the flow around the blades and the distribution of aerodynamic loads developed on them. The Vorticity Transport Model possesses a considerable advantage in those situtations where the accurate, but computationally efficient, modelling of the structure of the wake and the associated induced velocity is critical, but where the prediction of blade loads can be achieved with sufficient accuracy using a lifting-line model augmented by incorporating a semi-empirical stall delay model. The largest benefits can be extracted when the two methods are used to complement each other in order to understand better the physical mechanisms governing the aerodynamic performance of wind turbines

    Attosecond counter-rotating-wave effect in xenon driven by strong fields

    Get PDF
    We investigate the subfemtosecond dynamics of a highly excited xenon atom coherently driven by a strong control field at which the Rabi frequency of the system is comparable to the frequency of a driving laser. The widely used rotating-wave approximation breaks down at such fields, resulting in features such as the counter-rotating-wave (CRW) effect. We present a time-resolved observation of the CRW effect in the highly excited 4d-1np xenon using attosecond transient absorption spectroscopy. Time-dependent many-body theory confirms the observation and explains the various features of the absorption spectrum seen in experiment. ?2017 American Physical Society.111Ysciescopu

    ECG-QA: A Comprehensive Question Answering Dataset Combined With Electrocardiogram

    Full text link
    Question answering (QA) in the field of healthcare has received much attention due to significant advancements in natural language processing. However, existing healthcare QA datasets primarily focus on medical images, clinical notes, or structured electronic health record tables. This leaves the vast potential of combining electrocardiogram (ECG) data with these systems largely untapped. To address this gap, we present ECG-QA, the first QA dataset specifically designed for ECG analysis. The dataset comprises a total of 70 question templates that cover a wide range of clinically relevant ECG topics, each validated by an ECG expert to ensure their clinical utility. As a result, our dataset includes diverse ECG interpretation questions, including those that require a comparative analysis of two different ECGs. In addition, we have conducted numerous experiments to provide valuable insights for future research directions. We believe that ECG-QA will serve as a valuable resource for the development of intelligent QA systems capable of assisting clinicians in ECG interpretations.Comment: 39 pages (9 pages for main text, 2 pages for references, 28 pages for supplementary materials

    Prediction of unsteady blade loads of a wind turbine using RANS and vorticity transport methodologies

    Get PDF
    Numerical simulations of the NREL phase VI wind turbine operating in yawed conditions have been performed using two computational methods; one based on the solution of the Reynolds-averaged Navier-Stokes equations (RANS) using unstructured overset meshes and one known as the Vorticity Transport Model (VTM) that is based on the solution of the vorticity transport equation. The effect of the hub that was present during the NREL experiments was investigated by modeling the hub in the RANS simulations. It was found that the hub influenced the loading significantly at the inboard part of the blade when the blade passed through the wake that was developed by the hub. Both the RANS and VTM codes are able to predict well the unsteady and time-averaged aerodynamic loadings on the wind turbine blades at low wind speeds. At high wind speeds, leading-edge flow separation and strong radial flow are observed on the suction surface of the blades, when the blades are at the retreating side of the rotor. Both the RANS and VTM codes provide less accurate predictions of the blade loads. However, at the advancing side of the rotor, the flow is mostly attached to the surface of the blade, and both the RANS and VTM predictions of the blade loads are in good agreement with the measured data

    Size distributions of atmospheric particulate matter and associated trace metals in the multi-industrial city of Ulsan, Korea

    Get PDF
    Particulate matter (PM) was collected using micro-orifice uniform deposit impactors from a residential (RES) site and an industrial (IND) site in Ulsan, South Korea, in September-October 2014. The PM samples were measured based on their size distributions (11 stages), ranging from 0.06 ??m to over 18.0 ??m. Nine trace metals (As, Se, Cr, V, Cd, Pb, Ba, Sb, and Zn) associated with PM were analyzed. The PM samples exhibited weak bimodal distributions irrespective of sampling sites and events, and the mean concentrations of total PM (TPM) measured at the IND site (56.7 ??g/m3) was higher than that measured at the RES site (38.2 ??g/m3). The IND site also showed higher levels of nine trace metals, reflecting the influence of industrial activities and traffic emissions. At both sites, four trace metals (Ba, Zn, V, and Cr) contributed to over 80% of the total concentrations in TPM. The modality of individual trace metals was not strong except for Zn; however, the nine trace metals in PM2.5 and PM10 accounted for approximately 50% and 90% of the total concentrations in TPM, respectively. This result indicates that the size distributions of PM and trace metals are important to understand how respirable PM affects public health

    AJK2011-07008 NUMERICAL SIMULATION OF UNDERWATER PROPULSOR USING AN UNSTRUCTURED OVERSET MESH TECHNIQUE

    Get PDF
    ABSTRACT In the present study, the hydrodynamic characteristics of underwater propulsors have been numerically investigated using a RANS flow solver based on pseudo-compressibility. A vertexcentered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. An unstructured overset mesh technique was adopted to treat the relative motion between multiple bodies. Calculations were made for the DTRC4119 marine propeller at several advancing ratios. Additional calculations were also made for multipleblade-row underwater propulsors. Reasonable agreements were obtained between the present results and the experiment for the pressure coefficients on the blade surface and the integrated blade loadings. The interaction between multiple blade rows and the thrust and torque distributions were also analyzed to investigate the performance of underwater propulsors

    MOLECULAR DYNAMICS SIMULATION OF WATER BEHAVIOR AS A FUNCTION OF TEMPERATURES AND MONOMER NUMBERS IN NAFION 117

    Get PDF
    ABSTRACT The proton exchange membrane plays a critical role as an electrolyte for proton transports in the PEMFC. Generally, the membrane, such as Nafion 117, consists of a polytetrafluoroethylene (PTFE) backbone and side-chains terminated with a sulfonate group ( 3 SO − ). Operating the fuel cell, the membrane preferentially becomes hydrated by absorbing water. Then, the hydrogen atom on the 3 SO − part of the side-chain can detach from its own position and hop to the next 3 SO − site. The water management is the key to the efficient operation of the fuel cell, since the water content is the one of decisive factors for membrane's lifetime and efficient operations of fuel cells as well. In this report, we set up the molecular model for hydrated Nafion 117 and simulate the molecular movements for various temperatures and monomer numbers. Here, we obtain the mean square displacements of water molecules and estimate the selfdiffusion coefficients of water in the Nafion 117. Greek Symbol
    corecore