48,462 research outputs found
Higgs bosons of a supersymmetric model at the Large Hadron Collider
It is found that CP symmetry may be explicitly broken in the Higgs sector of
a supersymmetric model with two extra neutral gauge bosons at the
one-loop level. The phenomenology of the model, the Higgs sector in particular,
is studied for a reasonable parameter space of the model, in the presence of
explicit CP violation at the one-loop level. At least one of the neutral Higgs
bosons of the model might be produced via the fusion process at the Large
Hadron Collider.Comment: 23 pages, 5 figures, JHE
Einstein Manifolds As Yang-Mills Instantons
It is well-known that Einstein gravity can be formulated as a gauge theory of
Lorentz group where spin connections play a role of gauge fields and Riemann
curvature tensors correspond to their field strengths. One can then pose an
interesting question: What is the Einstein equations from the gauge theory
point of view? Or equivalently, what is the gauge theory object corresponding
to Einstein manifolds? We show that the Einstein equations in four dimensions
are precisely self-duality equations in Yang-Mills gauge theory and so Einstein
manifolds correspond to Yang-Mills instantons in SO(4) = SU(2)_L x SU(2)_R
gauge theory. Specifically, we prove that any Einstein manifold with or without
a cosmological constant always arises as the sum of SU(2)_L instantons and
SU(2)_R anti-instantons. This result explains why an Einstein manifold must be
stable because two kinds of instantons belong to different gauge groups,
instantons in SU(2)_L and anti-instantons in SU(2)_R, and so they cannot decay
into a vacuum. We further illuminate the stability of Einstein manifolds by
showing that they carry nontrivial topological invariants.Comment: v4; 17 pages, published version in Mod. Phys. Lett.
Explicit CP violation in a MSSM with an extra
We study that a minimal supersymmetric standard model with an extra
gauge symmetry may accommodate the explicit CP violation at the one-loop level
through radiative corrections. This model is CP conserving at the tree level
and cannot realize the spontaneous CP violation for a wide parameter space at
the one-loop level. In explicit CP violation scenario, we calculate the Higgs
boson masses and the magnitude of the scalar-pseudoscalar mixings in this model
at the one-loop level by taking into account the contributions of top quarks,
bottom quarks, exotic quarks, and their superpartners. In particular, we
investigate how the exotic quarks and squarks would affect the
scalar-pseudoscalar mixings. It is observed that the size of the mixing between
the heaviest scalar and pseudoscalar Higgs bosons is changed up to 20 % by a
complex phase originated from the exotic quark sector of this model.Comment: 19 pages, 3 figure
Higgs bosons of a supersymmetric model at the ILC
We study the scalar Higgs sector of the next-to-minimal supersymmetric
standard model with an extra U(1), which has two Higgs doublets and a Higgs
singlet, in the light leptophobic scenario where the extra neutral gauge
boson does not couple to charged leptons. In this model, we find that the
sum of the squared coupling coefficients of the three neutral scalar Higgs
bosons to , normalized by the corresponding SM coupling coefficient is
noticeably smaller than unity, due to the effect of the extra U(1), for a
reasonable parameter space of the model, whereas it is unity in the
next-to-minimal supersymmetric standard model. Thus, these two models may be
distinguished if the coupling coefficients of neutral scalar Higgs bosons to
are measured at the future International Linear Collider by producing them
via the Higgs-strahlung, fusion, and fusion processes.Comment: 12 pages, 2 figures, 1 table, PR
- …