34,658 research outputs found

    Majorana fermions in s-wave noncentrosymmetric superconductor with Rashba and Dresselhaus (110) spin-orbit couplings

    Full text link
    The asymmetric spin-orbit (SO) interactions play a crucial role in realizing topological phases in noncentrosymmetric superconductor (NCS).We investigate the edge states and the vortex core states in s-wave NCS with Rashba and Dresselhaus (110) SO couplings by both numerical and analytical methods. In particular, we demonstrate that there exists a novel semimetal phase characterized by the flat Andreev bound states in the phase diagram of the s-wave Dresselhaus NCS which supports the emergence of Majorana fermion (MF). The flat dispersion implies a peak in the density of states which has a clear experimental signature in the tunneling conductance measurements and the MFs proposed here should be experimentally detectable

    Realizations of the qq-Heisenberg and qq-Virasoro Algebras

    Get PDF
    We give field theoretic realizations of both the qq-Heisenberg and the qq-Virasoro algebra. In particular, we obtain the operator product expansions among the current and the energy momentum tensor obtained using the Sugawara construction.Comment: 9 page

    Kinematic approach to the mixed state geometric phase in nonunitary evolution

    Full text link
    A kinematic approach to the geometric phase for mixed quantal states in nonunitary evolution is proposed. This phase is manifestly gauge invariant and can be experimentally tested in interferometry. It leads to well-known results when the evolution is unitary.Comment: Minor changes; journal reference adde

    High efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    Full text link
    We propose a high efficiency tomographic scheme to reconstruct an unknown quantum state of the qubits by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the the stationary transmissions of the dispersively-coupled resonator. It is shown that only one kind of QND measurements is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining non-diagonal elements of the density matrix can be determined by other spectral measurements by beforehand transferring them to the diagonal locations using a series of unitary operations. Compared with the pervious tomographic reconstructions based on the usual destructively projective (DP) measurements (wherein one kind of such measurements could only determine one diagonal element of the density matrix), the present approach exhibits significantly high efficiency for N-qubit (N > 1). Specifically, our generic proposal is demonstrated by the experimental circuit-quantumelectrodynamics (circuit-QED) systems with a few Josephson charge qubits.Comment: 9pages,4figure

    Achieving diffraction-limited performance on the Berkeley MET5

    Get PDF
    The Berkeley MET5, funded by EUREKA, is a 0.5-NA EUV projection lithography tool located at the Advanced Light Source at Berkeley National Lab. Wavefront measurements of the MET5 optic have been performed using a custom in-situ lateral shearing interferometer suitable for high-NA interferometry. In this paper, we report on the most recent characterization of the MET5 optic demonstrating an RMS wavefront 0.31 nm, and discuss the specialized mask patterns, gratings, and illumination geometries that were employed to accommodate the many challenges associated with high-NA EUV interferometry

    Experimental Quantum Cloning with Prior Partial Information

    Full text link
    When prior partial information about a state to be cloned is available, it can be cloned with a fidelity higher than that of universal quantum cloning. We experimentally verify this intriguing relationship between the cloning fidelity and the prior information by reporting the first experimental optimal quantum state-dependent cloning, using nuclear magnetic resonance techniques. Our experiments may further have important implications into many quantum information processing protocols.Comment: 4 pages, 2 figure

    Quantitative conditions do not guarantee the validity of the adiabatic approximation

    Full text link
    In this letter, we point out that the widely used quantitative conditions in the adiabatic theorem are insufficient in that they do not guarantee the validity of the adiabatic approximation. We also reexamine the inconsistency issue raised by Marzlin and Sanders (Phys. Rev. Lett. 93, 160408, 2004) and elucidate the underlying cause.Comment: corrected typos. Eq. (32) is corrected. No other change

    Hadronic decays of B involving a tensor meson through a bcb \to c transition

    Full text link
    We re-analyze hadronic decays of B mesons to a pseudoscalar (P) and a tensor meson (T), or a vector meson (V) and a tensor meson, through a bcb \to c transition. We discuss possible large uncertainties to branching ratios (BR's) of the relevant modes, mainly arising from uncertainties to the hadronic form factors for the BTB \to T transition. The BR's and CP asymmetries for BPTB \to PT and VT decays are then calculated by using the form factors given in the ISGW2 model (the improved version of the original Isgur-Scora-Grinstein-Wise (ISGW) model). We find that the estimated BR's of many modes are increased by an order of magnitude, compared to the previous results calculated within the ISGW model.Comment: 22 pages, LaTex; minor clarifications included; to appear in Phys. Rev.

    Broadcasting Quantum Fisher Information

    Full text link
    It is well known that classical information can be cloned, but non-orthogonal quantum states cannot be cloned, and non-commuting quantum states cannot be broadcast. We conceive a scenario in which the object we want to broadcast is the statistical distinguishability, as quantified by quantum Fisher information, about a signal parameter encoded in quantum states. We show that quantum Fisher information cannot be cloned, whilst it might be broadcast even when the input states are non-commuting. This situation interpolates between cloning of classical information and no-broadcasting of quantum information, and indicates a hybrid way of information broadcasting which is of particular significance from both practical and theoretical perspectives.Comment: 5 pages. Improved version. Any comments is welcom
    corecore