426 research outputs found

    Person Recognition in Personal Photo Collections

    Full text link
    Recognising persons in everyday photos presents major challenges (occluded faces, different clothing, locations, etc.) for machine vision. We propose a convnet based person recognition system on which we provide an in-depth analysis of informativeness of different body cues, impact of training data, and the common failure modes of the system. In addition, we discuss the limitations of existing benchmarks and propose more challenging ones. Our method is simple and is built on open source and open data, yet it improves the state of the art results on a large dataset of social media photos (PIPA).Comment: Accepted to ICCV 2015, revise

    A Bayesian Approach To Analysing Training Data Attribution In Deep Learning

    Full text link
    Training data attribution (TDA) techniques find influential training data for the model's prediction on the test data of interest. They approximate the impact of down- or up-weighting a particular training sample. While conceptually useful, they are hardly applicable to deep models in practice, particularly because of their sensitivity to different model initialisation. In this paper, we introduce a Bayesian perspective on the TDA task, where the learned model is treated as a Bayesian posterior and the TDA estimates as random variables. From this novel viewpoint, we observe that the influence of an individual training sample is often overshadowed by the noise stemming from model initialisation and SGD batch composition. Based on this observation, we argue that TDA can only be reliably used for explaining deep model predictions that are consistently influenced by certain training data, independent of other noise factors. Our experiments demonstrate the rarity of such noise-independent training-test data pairs but confirm their existence. We recommend that future researchers and practitioners trust TDA estimates only in such cases. Further, we find a disagreement between ground truth and estimated TDA distributions and encourage future work to study this gap. Code is provided at https://github.com/ElisaNguyen/bayesian-tda

    Exploiting saliency for object segmentation from image level labels

    Get PDF
    There have been remarkable improvements in the semantic labelling task in the recent years. However, the state of the art methods rely on large-scale pixel-level annotations. This paper studies the problem of training a pixel-wise semantic labeller network from image-level annotations of the present object classes. Recently, it has been shown that high quality seeds indicating discriminative object regions can be obtained from image-level labels. Without additional information, obtaining the full extent of the object is an inherently ill-posed problem due to co-occurrences. We propose using a saliency model as additional information and hereby exploit prior knowledge on the object extent and image statistics. We show how to combine both information sources in order to recover 80% of the fully supervised performance - which is the new state of the art in weakly supervised training for pixel-wise semantic labelling. The code is available at https://goo.gl/KygSeb.Comment: CVPR 201

    URL: A Representation Learning Benchmark for Transferable Uncertainty Estimates

    Full text link
    Representation learning has significantly driven the field to develop pretrained models that can act as a valuable starting point when transferring to new datasets. With the rising demand for reliable machine learning and uncertainty quantification, there is a need for pretrained models that not only provide embeddings but also transferable uncertainty estimates. To guide the development of such models, we propose the Uncertainty-aware Representation Learning (URL) benchmark. Besides the transferability of the representations, it also measures the zero-shot transferability of the uncertainty estimate using a novel metric. We apply URL to evaluate eleven uncertainty quantifiers that are pretrained on ImageNet and transferred to eight downstream datasets. We find that approaches that focus on the uncertainty of the representation itself or estimate the prediction risk directly outperform those that are based on the probabilities of upstream classes. Yet, achieving transferable uncertainty quantification remains an open challenge. Our findings indicate that it is not necessarily in conflict with traditional representation learning goals. Code is provided under https://github.com/mkirchhof/url

    Exploring Practitioner Perspectives On Training Data Attribution Explanations

    Full text link
    Explainable AI (XAI) aims to provide insight into opaque model reasoning to humans and as such is an interdisciplinary field by nature. In this paper, we interviewed 10 practitioners to understand the possible usability of training data attribution (TDA) explanations and to explore the design space of such an approach. We confirmed that training data quality is often the most important factor for high model performance in practice and model developers mainly rely on their own experience to curate data. End-users expect explanations to enhance their interaction with the model and do not necessarily prioritise but are open to training data as a means of explanation. Within our participants, we found that TDA explanations are not well-known and therefore not used. We urge the community to focus on the utility of TDA techniques from the human-machine collaboration perspective and broaden the TDA evaluation to reflect common use cases in practice.Comment: Accepted to NeurIPS XAI in Action workshop 202
    • …
    corecore