10 research outputs found

    Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest

    Get PDF
    Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 µM of SFN for 12 h caused a cell cycle arrest in the G2/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma

    Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst

    Get PDF
    Electrocatalytic conversion of nitrogen oxides to value-added chemicals is a promising strategy for mitigating the human-caused unbalance of the global nitrogen-cycle, but controlling product selectivity remains a great challenge. Here we show iron–nitrogen-doped carbon as an efficient and durable electrocatalyst for selective nitric oxide reduction into hydroxylamine. Using in operando spectroscopic techniques, the catalytic site is identified as isolated ferrous moieties, at which the rate for hydroxylamine production increases in a super-Nernstian way upon pH decrease. Computational multiscale modelling attributes the origin of unconventional pH dependence to the redox active (non-innocent) property of NO. This makes the rate-limiting NO adsorbate state more sensitive to surface charge which varies with the pH-dependent overpotential. Guided by these fundamental insights, we achieve a Faradaic efficiency of 71% and an unprecedented production rate of 215 μmol cm−2 h−1 at a short-circuit mode in a flow-type fuel cell without significant catalytic deactivation over 50 h operation. © 2021, The Author(s).1

    STMAC: Spatio-Temporal Coordination-Based MAC Protocol for Driving Safety in Urban Vehicular Networks

    No full text
    In this paper, we propose a spatio-temporal coordination-based media access control (STMAC) protocol for efficiently sharing driving safety information in urban vehicular networks. STMAC exploits a unique spatio-temporal feature characterized from a geometric relation among vehicles to form a line-of-collision graph, which shows the relationship among vehicles that may collide with each other. Based on this graph, we propose a contention-free channel access scheme to exchange safety messages simultaneously by employing directional antenna and transmission power control. Based on an urban road layout, we propose an optimized contention period schedule by considering the arrival rate of vehicles at an intersection in the communication range of a road-side unit to reduce vehicle registration time. Using theoretical analysis and extensive simulations, it is shown that STMAC outperforms legacy MAC protocols especially in a traffic congestion scenario. In the congestion case, STMAC can reduce the average superframe duration by 66.7%, packet end-to-end delay by 68.3%, and packet loss ratio by 88% in comparison with the existing MAC protocol for vehicle-to-infrastructure communication, based on the IEEE 802.11p. IEEE1

    Plasma membrane-localized plant immune receptor targets H+-ATPase for membrane depolarization to regulate cell death

    No full text
    The hypersensitive response (HR) is a robust immune response mediated by nucleotide-binding, leucine-rich repeat receptors (NLRs). However, the early molecular event that links activated NLRs to cell death is unclear. Here, we demonstrate that NLRs target plasma membrane H+-ATPases (PMAs) that generate electrochemical potential, an essential component of living cells, across the plasma membrane. CC(A)309, an autoactive N-terminal domain of a coiled-coil NLR (CNL) in pepper, is associated with PMAs. Silencing or overexpression of PMAs reversibly affects cell death induced by CC(A)309 in Nicotiana benthamiana. CC(A)309-induced extracellular alkalization causes plasma membrane depolarization, followed by cell death. Coimmunoprecipitation analyses suggest that CC(A)309 inhibits PMA activation by preoccupying the dephosphorylated penultimate threonine residue of PMA. Moreover, pharmacological experiments using fusicoccin, an irreversible PMA activator, showed that inhibition of PMAs contributes to CNL-type (but not Toll interleukin-1 receptor NLR-type) resistance protein-induced cell death. We suggest PMAs as primary targets of plasma membrane-associated CNLs leading to HR-associated cell death by disturbing the electrochemical gradient across the membrane. These results provide new insight into NLR-mediated cell death in plants, as well as innate immunity in higher eukaryotes.Y

    Automotive 2.1 μm Full-Depth Deep Trench Isolation CMOS Image Sensor with a 120 dB Single-Exposure Dynamic Range

    No full text
    An automotive 2.1 μm CMOS image sensor has been developed with a full-depth deep trench isolation and an advanced readout circuit technology. To achieve a high dynamic range, we employ a sub-pixel structure featuring a high conversion gain of a large photodiode and a lateral overflow of a small photodiode connected to an in-pixel storage capacitor. With the sensitivity ratio of 10, the expanded dynamic range could reach 120 dB at 85 °C by realizing a low random noise of 0.83 e- and a high overflow capacity of 210 ke-. An over 25 dB signal-to-noise ratio is achieved during HDR image synthesis by increasing the full-well capacity of the small photodiode up to 10,000 e- and suppressing the floating diffusion leakage current at 105 °C
    corecore