773 research outputs found

    Extended Ensemble Molecular Dynamics for Thermodynamics of Phases

    Full text link
    The first-order phase transitions and related thermodynamics properties are primary concerns of materials sciences and engineering. In traditional atomistic simulations, the phase transitions and the estimation of their thermodynamic properties are challenging tasks because the trajectories get trapped in local minima close to the initial states. In this study, we investigate various extended ensemble molecular dynamics (MD) methods based on the multicanonical ensemble method using the Wang-Landau (WL) approach. We performed multibaric-multithermal (MBMT) method to fluid phase, gas-liquid transition, and liquid-solid transition of the Lennard-Jones (LJ) system. The derived thermodynamic properties of the fluid phase and the gas-liquid transition from the MBMT agree well with the previously reported equation of states (EOSs). However, the MBMT cannot correctly predict the liquid-solid transition. The multiorder-multithermal (MOMT) ensemble shows significantly enhanced sampling between liquid and solid states with an accurate estimation of transition temperatures. We further investigated the dynamics of each system based on their free energy shapes, providing fundamental insights for their sampling behaviors. This study guides the prediction of broader crystalline materials, e.g., alloys, for their phases and thermodynamic properties from atomistic modeling

    Effect of Home-Based Transcranial Direct Current Stimulation on Cognitive Function in Patients with Mild Cognitive Impairment: A Two-Week Intervention

    Get PDF
    PURPOSE: Repeated transcranial direct current stimulation (tDCS) is expected to have the potential to improve cognitive function in patients with mild cognitive impairment (MCI). We aimed to evaluate the efficacy and safety of at-home tDCS for elderly patients with MCI. MATERIALS AND METHODS: Patients aged 60-80 years, who maintained normal daily living but reported objective memory impairments, were enrolled. Active or sham stimulations were applied to the dorsal frontal cortex (left: anode; right: cathode) at home for 2 weeks. Changes in cognitive function were assessed using visual recognition tasks and the Mini-Mental State Exam (MMSE), and safety and efficacy were assessed using self-reports and a remote monitoring application. RESULTS: Of the 19 participants enrolled, 12 participants were included in the efficacy analysis. Response times and MMSE scores significantly improved after active stimulation compared to the sham stimulation; however, there were no significant differences in the proportion of correct responses. The mean compliance of the efficacy group was 97.5%±4.1%. Three participants experienced burns, but no permanent sequelae remained. CONCLUSION: This preliminary result suggests that home-based tDCS may be a promising treatment option for MCI patients; however, it requires more attention and technological development to address safety concerns

    Electroactive Artificial Muscles Based on Functionally Antagonistic Core–Shell Polymer Electrolyte Derived from PS-b-PSS Block Copolymer

    Get PDF
    Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic core–shell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally good actuation performance, with a high displacement of 8.22 mm at an ultralow voltage of 0.5 V, a fast rise time of 5 s, and excellent durability over 14 000 cycles. It is envisaged that the development of this high-performance ionic soft actuator could contribute to the progress toward the realization of the aforementioned applications. Furthermore, the procedure described herein can also be applied for developing novel polymer electrolytes related to solid-state lithium batteries and fuel cells

    IRT5 Probiotics Changes Immune Modulatory Protein Expression in the Extraorbital Lacrimal Glands of an Autoimmune Dry Eye Mouse Model

    Get PDF
    PURPOSE. While the association between the gut microbiome and the immune system has been studied in autoimmune disorders, little is known about ocular disease. Previously we reported that IRT5, a mixture of five probiotic strains, could suppress autoimmune dry eye. In this study, we investigated the mechanism by which IRT5 performs its immunomodulatory function in a mouse model of autoimmune dry eye. METHODS. NOD.B10.H2b mice were used as an autoimmune dry eye model. Either IRT5 or PBS was gavaged orally for 3 weeks, with or without 5 days of antibiotic pretreatment. The effects on clinical features, extraorbital lacrimal gland and spleen proteins, and fecal microbiota were analyzed. RESULTS. The ocular staining score was lower, and tear secretion was higher, in the IRT5-treated groups than in the PBS-treated groups. After IRT5 treatment, the downregulated lacrimal gland proteins were enriched in the biological processes of defense response and immune system process. The relative abundances of 33 operational taxonomic units were higher, and 53 were lower, in the feces of the IRT5-treated groups than in those of the PBS-treated groups. IRT5 administration without antibiotic pretreatment also showed immunomodulatory functions with increases in the Lactobacillus helveticus group and Lactobacillus hamsteri. Additional proteomic assays revealed a decrease of proteins related to antigen-presenting processes in the CD11b(+) and CD11c(+) cells of spleen in the IRT5-treated groups. CONCLUSIONS. Changes in the gut microbiome after IRT5 treatment improved clinical manifestations in the autoimmune dry eye model via the downregulation of antigen-presenting processes in immune networks.11Ysciescopu

    Staging of Alzheimer's Pathology in Triple Transgenic Mice: A Light and Electron Microscopic Analysis

    Get PDF
    The age-related pathological cascade underlying intraneuronal tau formation in 3xTg-AD mice, which harbor the human APPSwe, PS1M126V , and TauP301L gene mutations, remains unclear. At 3 weeks of age, AT180, Alz50, MC1, AT8, and PHF-1 intraneuronal immunoreactivity appeared in the amygdala and hippocampus and at later ages in the cortex of 3xTg-AD mice. AT8 and PHF-1 staining was fixation dependent in young mutant mice. 6E10 staining was seen at all ages. Fluorescent immunomicroscopy revealed CA1 neurons dual stained for 6E10 and Alz50 and single Alz50 immunoreactive neurons in the subiculum at 3 weeks and continuing to 20 months. Although electron microscopy confirmed intraneuronal cytoplasmic Alz50, AT8, and 6E10 reaction product in younger 3xTg-AD mice, straight filaments appeared at 23 months of age in female mice. The present data suggest that other age-related biochemical mechanisms in addition to early intraneuronal accumulation of 6E10 and tau underlie the formation of tau filaments in 3xTg-AD mice

    Cell-free synthesis of functional phospholipase A1 from Serratia sp.

    Get PDF
    Additional file 1: Figure S1 Gas chromatography analysis of sesame oil incubated with cell-free synthesized PLA1

    Isolation and Bioactivity Analysis of Ethyl Acetate Extract from Acer tegmentosum

    Get PDF
    The Acer tegmentosum (3 kg) was extracted using hot water, and the freeze-dried extract powder was partitioned successively using dichloromethane (DCM), ethyl acetate (EA), butyl alcohol (n-BuOH), and water. From the EA extract fraction (1.24 g), five phenolic compounds were isolated by the silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatography. Based on spectroscopic methods such as 1H-NMR, 13C-NMR, and LC/MS the chemical structures of the compounds were confirmed as feniculin (1), avicularin (2), (+)-catechin (3), (−)-epicatechin (4), and 6′-O-galloyl salidroside (5). Moreover, a rapid on-line screening HPLC-ABTS+ system for individual bioactivity of the EA-soluble fraction (five phenolic compounds) was developed. The results indicated that compounds 1 and 2 were first isolated from the A. tegmentosum. The anti-inflammatory activities and on-line screening HPLC-ABTS+ assay method of these compounds in LPS-stimulated murine macrophages were rapid and efficient for the investigation of bioactivity of A. tegmentosum

    Unidirectional emission from a cardioid-shaped microcavity laser

    Get PDF
    We find unidirectional emission in a cardioid-shaped microcavity laser. When a deformation parameter is well adjusted, rays starting around a period-5 unstable periodic orbit emit unidirectionally. To confirm the emission direction, we fabricate a laser by using an InGaAsP semiconductor and investigate emission characteristics. When the laser is excited by current injection with a dc current, resonances localized on the period-5 unstable periodic orbit emit unidirectionally. © 2016 Optical Society of America.1
    corecore