40 research outputs found

    Description of a new mutation in rhodopsin, Pro23Ala, and comparison with electroretinographic and clinical characteristics of the Pro23His mutation

    No full text
    OBJECTIVES: To report the clinical characteristics of a family with autosomal dominant retinitis pigmentosa caused by a proline-to-alanine mutation at codon 23 (Pro23Ala) of the rhodopsin gene and to compare this phenotype with that associated with the more common proline-to-histidine mutation at codon 23 (Pro23His).METHODS: We examined 6 patients within a single pedigree. The electroretinograms (ERGs) of 35 patients with known Pro23His mutations and of 22 healthy individuals were reviewed. Scotopic dim flash-response amplitudes, maximum combined-response amplitudes, and photopic-response amplitudes from the ERGs of these patients were plotted against age. The ERG indices of 5 individuals in the Pro23Ala family were compared with those of the patients with Pro23His mutations and of healthy individuals. Multiple linear regression was performed to evaluate the effect of age and mutation type on amplitudes. Mutation detection was performed using single-strand conformation polymorphism analysis, followed by automated DNA sequencing.RESULTS: Patients with the Pro23Ala mutation have a clinical phenotype characterized by onset of symptoms in the second to fourth decades of life, loss of superior visual field with relatively well-preserved inferior fields, and mild nyctalopia. Comparison with patients with the Pro23His mutation demonstrates statistically significant differences (P&lt;.001) in responses to dim flash, maximum combined, and photopic responses between patients with these mutations after controlling for the effects of age. Patients with Pro23Ala mutations were less affected by ERG criteria than patients with Pro23His mutations. Patients with Pro23Ala mutations also differed significantly from healthy patients in all ERG indices examined (P&lt;.001), after controlling for age.CONCLUSION: We describe a rare mutation in codon 23 of rhodopsin causing autosomal dominant retinitis pigmentosa. The retinal dystrophy associated with the Pro23Ala mutation is characteristically mild in presentation and course, with greater preservation of ERG amplitudes than the more prevalent Pro23His mutation<br/

    An analysis of allelic variation in the ABCA4 gene

    No full text
    PURPOSE. To assess the allelic variation of the ATP-binding transporter protein (ABCA4). METHODS. A combination of single-strand conformation polymorphism (SSCP) and automated DNA sequencing was used to systematically screen this gene for sequence variations in 374 unrelated probands with a clinical diagnosis of Stargardt disease, 182 patients with age-related macular degeneration (AMD), and 96 normal subjects. RESULTS. There was no significant difference in the proportion of any single variant or class of variant between the control and AMD groups. In contrast, truncating variants, amino acid substitutions, synonymous codon changes, and intronic variants were significantly enriched in patients with Stargardt disease when compared with their presence in subjects without Stargardt disease (Kruskal-Wallis P &lt; 0.0001 for each variant group). Overall, there were 2480 instances of 213 different variants in the ABCA4 gene, including 589 instances of 97 amino acid substitutions, and 45 instances of 33 truncating variants. CONCLUSIONS. Of the 97 amino acid substitutions, 11 occurred at a frequency that made them unlikely to be high-penetrance recessive disease-causing variants (HPRDCV). After accounting for variants in cis, one or more changes that were compatible with HPRDCV were found on 35% of all Stargardt-associated alleles overall. The nucleotide diversity of the ABCA4 coding region, a collective measure of the number and prevalence of polymorphic sites in a region of DNA, was found to be 1.28, a value that is 9 to 400 times greater than that of two other macular disease genes that were examined in a similar fashion (VMD2 and EFEMP1)

    Genetic defects in dolichol metabolism

    Get PDF
    Contains fulltext : 155350.pdf (publisher's version ) (Open Access)Congenital disorders of glycosylation (CDG) comprise a group of inborn errors of metabolism with abnormal glycosylation of proteins and lipids. Patients with defective protein N-glycosylation are identified in routine metabolic screening via analysis of serum transferrin glycosylation. Defects in the assembly of the dolichol linked Glc(3)Man(9)GlcNAc(2) glycan and its transfer to proteins lead to the (partial) absence of complete glycans on proteins. These defects are called CDG-I and are located in the endoplasmic reticulum (ER) or cytoplasm. Defects in the subsequent processing of protein bound glycans result in the presence of truncated glycans on proteins. These defects are called CDG-II and the enzymes involved are located mainly in the Golgi apparatus. In recent years, human defects have been identified in dolichol biosynthesis genes within the group of CDG-I patients. This has increased interest in dolichol metabolism, has resulted in specific recognizable clinical symptoms in CDG-I and has offered new mechanistic insights in dolichol biosynthesis. We here review its biosynthetic pathways, the clinical and biochemical phenotypes in dolichol-related CDG defects, up to the formation of dolichyl-P-mannose (Dol-P-Man), and discuss existing evidence of regulatory networks in dolichol metabolism to provide an outlook on therapeutic strategies
    corecore