14 research outputs found
Recommended from our members
Evaluation of Berry Extracts on Intestinal Digestive Enzymes and Sugar Transporters
T2DM is a chronic disease characterized by postprandial hyperglycemia. One of the therapeutic approaches to attenuate hyperglycemia is to inhibit intestinal ɑ-glucosidase enzyme and/or suppress glucose transporters that regulate intestinal glucose transporters such as SGLT1 & GLUT2. Berries rich in polyphenol antioxidants have various health benefits. Although the antidiabetic effects of various berry extracts or berry mixture in pre-clinical and clinical studies, the underlying pathways at the molecular level is still unclear. In this study, we investigated antioxidant and antidiabetic effects of selected berry extracts by determining free radical scavenging activates, Caco-2 intestinal ɑ-glucosidase activity, glucose uptake and the gene expression of ɑ-glucosidase and glucose transporters in Caco-2 cells. Total phenolic contents of berry extracts varied from 28.55 ± 0.06 to 56.15 ± 1.08 gallic acid equivalent (GAE μg/mL) and correlated with antioxidant capacities. Both cranberry extract (CBE) and blackberry extract (BBE) at 200 μg/mL concentration significantly decreased glucose uptake in Caco-2 cells. While mRNA expression and activity of ɑ-glucosidase were inhibited by CBE and BBE, mRNA expression of SGLT1 and GLUT2 was only inhibited by CBE. Moreover, CBE and BBE significantly decreased glucose uptake in the presence of sucrose and AS. Our data suggest that CBE and BBE have different molecular mechanisms in suppressing hyperglycemia and their effects are mediated by inhibiting carbohydrate digestion and absorption
Shocks to Product Networks and Post-Earnings Announcement Drift
This paper examines whether shocks to less visible product market peers are an important determinant of industry level post-earnings announcement drift (IPEAD) (Ayers and Freeman 1997; Hui et al. 2016). On the real-side, we find that a focal firm’s earnings are persistently related to the earnings surprises of its peers. On the financial-side, IPEAD arises only when these peers are less visible and when shocks are driven by persistent supply-side shocks to expenses, and not by demand-side shocks to sales. Text-based measures of disclosure opacity show that IPEAD is also stronger when firms provide less informative 10-K disclosures regarding their expenses. Collectively, our results suggest that inattention to less visible peers and a poor informational environment surrounding supply-side shocks are likely channels that generate IPEAD. IPEAD returns are economically large in subsamples motivated by this explanation
Anti-Obesity and Anti-Adipogenic Effects of Chitosan Oligosaccharide (GO2KA1) in SD Rats and in 3T3-L1 Preadipocytes Models
Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p \u3c 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level
Selected Tea and Tea Pomace Extracts Inhibit Intestinal α-Glucosidase Activity in Vitro and Postprandial Hyperglycemia in Vivo
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry
Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles
We demonstrate a highly sensitive electrochemical immunosensor based on the combined use of substrate recycling and carbon nanotubes (CNTs) coated with tyrosinase (TYR) and magnetic nanoparticles (MNP). Both TYR and MNP were immobilized on the surface of CNTs by covalent attachment, followed by additional cross-linking via glutaraldehyde treatment to construct multi-layered cross-linked TYR-MNP aggregates (M-EC-CNT). Magnetically capturable, highly active and stable M-EC-CNT were further conjugated with primary antibody against a target analyte of hIgG, and used for a sandwich-type immunoassay with a secondary antibody conjugated with alkaline phosphatase (ALP). In the presence of a target analyte, a sensing assembly of M-EC-CNT and ALP-conjugated antibody was attracted onto a gold electrode using a magnet. On an electrode, ALP-catalyzed hydrolysis of phenyl phosphate generated phenol, and successive TYR-catalyzed oxidation of phenol produced electrochemically measurable o-quinone that was converted to catechol in a scheme of substrate recycling. Combination of highly active M-EC-CNT and substrate recycling for the detection of hIgG resulted in a sensitivity of 27.6 nA ng(-1) mL(-1) and a detection limit of 0.19 ng mL(-1) (1.2 pM), respectively, representing better performance than any other electrochemical immunosensors relying on the substrate recycling with the TYR-ALP combination. The present immunosensing system also displayed a long-term stability by showing a negligible loss of electrochemical detection signal even after reagents were stored in an aqueous buffer at 4 degrees C for more than 6 months. (C) 2010 Elsevier B.V. All rights reserved.
Recommended from our members
Selected Tea and Tea Pomace Extracts Inhibit Intestinal α-Glucosidase Activity in Vitro and Postprandial Hyperglycemia in Vivo
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry
Selected Tea and Tea Pomace Extracts Inhibit Intestinal α-Glucosidase Activity in Vitro and Postprandial Hyperglycemia in Vivo
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by postprandial hyperglycemia, which is an early defect of T2DM and thus a primary target for anti-diabetic drugs. A therapeutic approach is to inhibit intestinal α-glucosidase, the key enzyme for dietary carbohydrate digestion, resulting in delayed rate of glucose absorption. Although tea extracts have been reported to have anti-diabetic effects, the potential bioactivity of tea pomace, the main bio waste of tea beverage processing, is largely unknown. We evaluated the anti-diabetic effects of three selected tea water extracts (TWE) and tea pomace extracts (TPE) by determining the relative potency of extracts on rat intestinal α-glucosidase activity in vitro as well as hypoglycemic effects in vivo. Green, oolong, and black tea bags were extracted in hot water and the remaining tea pomace were dried and further extracted in 70% ethanol. The extracts were determined for intestinal rat α-glucosidases activity, radical scavenging activity, and total phenolic content. The postprandial glucose-lowering effects of TWE and TPE of green and black tea were assessed in male Sprague-Dawley (SD) rats and compared to acarbose, a known pharmacological α-glucosidase inhibitor. The IC50 values of all three tea extracts against mammalian α-glucosidase were lower or similar in TPE groups than those of TWE groups. TWE and TPE of green tea exhibited the highest inhibitory effects against α-glucosidase activity with the IC50 of 2.04 ± 0.31 and 1.95 ± 0.37 mg/mL respectively. Among the specific enzymes tested, the IC50 values for TWE (0.16 ± 0.01 mg/mL) and TPE (0.13 ± 0.01 mg/mL) of green tea against sucrase activity were the lowest compared to those on maltase and glucoamylase activities. In the animal study, the blood glucose level at 30 min after oral intake (0.5 g/kg body wt) of TPE and TWE of both green and black tea was significantly reduced compared to the control in sucrose-loaded SD rats. The TPE of all three teas had significantly higher phenolic content than those of the TWE groups, which correlated strongly with the DPPH radical scavenging activity. This is the first report of tea pomace extract significantly inhibits intestinal α-glucosidase, resulting in delayed glucose absorption and thereby suppressed postprandial hyperglycemia. Our data suggest that tea pomace-derived bioactives may have great potential for further development as nutraceutical products and the reuse of otherwise biowaste as valuable bioresources for the industry