2 research outputs found

    Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data

    Get PDF
    Background: Most 'transcriptomic' data from microarrays are generated from small sample sizes compared to the large number of measured biomarkers, making it very difficult to build accurate and generalizable disease state classification models. Integrating information from different, but related, 'transcriptomic' data may help build better classification models. However, most proposed methods for integrative analysis of 'transcriptomic' data cannot incorporate domain knowledge, which can improve model performance. To this end, we have developed a methodology that leverages transfer rule learning and functional modules, which we call TRL-FM, to capture and abstract domain knowledge in the form of classification rules to facilitate integrative modeling of multiple gene expression data. TRL-FM is an extension of the transfer rule learner (TRL) that we developed previously. The goal of this study was to test our hypothesis that "an integrative model obtained via the TRL-FM approach outperforms traditional models based on single gene expression data sources". Results: To evaluate the feasibility of the TRL-FM framework, we compared the area under the ROC curve (AUC) of models developed with TRL-FM and other traditional methods, using 21 microarray datasets generated from three studies on brain cancer, prostate cancer, and lung disease, respectively. The results show that TRL-FM statistically significantly outperforms TRL as well as traditional models based on single source data. In addition, TRL-FM performed better than other integrative models driven by meta-analysis and cross-platform data merging. Conclusions: The capability of utilizing transferred abstract knowledge derived from source data using feature mapping enables the TRL-FM framework to mimic the human process of learning and adaptation when performing related tasks. The novel TRL-FM methodology for integrative modeling for multiple 'transcriptomic' datasets is able to intelligently incorporate domain knowledge that traditional methods might disregard, to boost predictive power and generalization performance. In this study, TRL-FM's abstraction of knowledge is achieved in the form of functional modules, but the overall framework is generalizable in that different approaches of acquiring abstract knowledge can be integrated into this framework

    On Predicting lung cancer subtypes using 'omic' data from tumor and tumor-adjacent histologically-normal tissue

    Get PDF
    Background: Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes. Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the biopsy is composed of at least 50% of tumor cells. However, for some cases, the tissue composition of a biopsy might be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required, with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational method can distinguish between lung cancer subtypes given tumor and TAHN tissue. Methods: Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks, depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC). Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene functional analysis. Results: All Bayesian models achieved high classification performance (AUC>0.94), which were confirmed by hierarchical cluster analysis. From the genes selected, 25 (93%) were found to be related to cancer (19 were associated with ADC or SCC), confirming the biological relevance of our method. Conclusions: The results from this study confirm that computational methods using tumor and TAHN tissue can serve as a prognostic tool for lung cancer subtype classification. Our study complements results from other studies where TAHN tissue has been used as prognostic tool for prostate cancer. The clinical implications of this finding could greatly benefit lung cancer patients
    corecore