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Abstract

Background: Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types
among lung cancers. Distinguishing between these subtypes is critically important because they have different
implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the
two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the
lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes.
Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the
biopsy is composed of at least 50 % of tumor cells. However, for some cases, the tissue composition of a biopsy might
be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required,
with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational
method can distinguish between lung cancer subtypes given tumor and TAHN tissue.

Methods: Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks,
depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to
select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the
classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC).
Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene
functional analysis.

Results: All Bayesian models achieved high classification performance (AUC > 0.94), which were confirmed by
hierarchical cluster analysis. From the genes selected, 25 (93 %) were found to be related to cancer (19 were
associated with ADC or SCC), confirming the biological relevance of our method.

Conclusions: The results from this study confirm that computational methods using tumor and TAHN tissue can
serve as a prognostic tool for lung cancer subtype classification. Our study complements results from other studies
where TAHN tissue has been used as prognostic tool for prostate cancer. The clinical implications of this finding could
greatly benefit lung cancer patients.
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Background
Lung cancer is the leading cause of human cancer death
in both sexes in the United States. In 2014, there was an
estimate of 224,210 new cases, while 159,260 patients
were estimated to have died from the disease [1]. Cigarette
smoking is the main risk factor for the development of
lung cancer [2]. While smoking has been proven to have a
high correlation with epigenetic changes in the DNA [3],
other behavioral and environmental factors might also be
recorded by changes in the epigenetics of the DNA (i.e.
passive smoking, air pollution, occupational exposure, al-
cohol consumption, poor diet, low physical activity).
Adenocarcinoma (ADC) and squamous cell carcinoma

(SCC) are the most common histological subtypes among
all lung cancers. Both of them are a form of cancer that
develops in the epithelial cells (carcinoma), and belong to
the category of non-small cell lung cancer. Lung ADC de-
velops in the glands that secrete products into the blood-
stream or some other cavity in the body –the mucus
secreting glands in the lungs. Most lung ADC arise in the
outer, or peripheral, areas of the lung [4]. In contrast, lung
SCC develops in flat surface covering cells. Squamous
cells allow trans-membrane movement, like filtration and
diffusion, for example the exchange of air in the alveoli
of lungs. Squamous cells can also serve as boundary
and protection of various organs. Most lung squamous
cell cancers frequently arise in the central chest area in
the bronchi [5].
The diagnosis of early stage lung cancer involves the use

of imaging techniques, followed by a biopsy for pathology
analysis [6]. Initially, screening of lung cancer is done
using chest x-ray, or low-dose computed tomography.
The American Cancer Society recommends screening to
patients between the ages of 55–74 years old who are
smokers or who quit smoking within the past 15 years [7].
Imaging techniques are not foolproof, so further analyses
are usually required to make final diagnostic decisions.
For instance, a cytological analysis is still required to con-
firm the imaging analysis [8]. In addition, tissue samples,
albeit small, are often obtained during a needle aspiration
biopsy or a bronchoscopy biopsy. The lack of tissue archi-
tecture in these small tissue specimens limits the patho-
logic analysis under a microscope [9].
Several studies have shown that molecular profiling of

lung carcinoma is a viable tool for disease diagnosis [10],
and prognosis [11]. What is more, distinguishing between
ADC and SCC has significant clinical implications – both
can have different treatment regimens. In this era of preci-
sion medicine, molecular characterization can be crucially
important in the selection of an effective drug regimen.
Potentially, patients can be subjected to drug regimens
that are beneficial and/or harmful. Four possibilities
summarize this situation: when a drug 1) has both thera-
peutic and adverse effects, 2) has only therapeutic effects

(no adverse effects), 3) has adverse but no therapeutic ef-
fects, and 4) has no adverse nor therapeutic effects. Treat-
ment safety and efficacy outcomes are important reasons
of concern and the main reason for tumor subtyping [12].
Furthermore, ADC and SCC have distinct progression
rate and progression free survival, which determines the
selection of treatment [13].
The molecular mechanisms of ADC and SCC are con-

siderably different. The standard molecular testing for
lung cancer is to check for mutations of two molecules:
epidermal growth factor receptor (EGFR) and rearrange-
ment of anaplastic lymphoma kinase (ALK). Each protein
has mutations that lead to the development of lung can-
cer. However, EGFR is found to be mutated only in
around 10 % of tumors [14]. Similarly, ALK mutation oc-
curs only in 6 % of tumors [15]. Although some drugs tar-
get EGFR and ALK positive tumors with therapeutic
benefits for the patient, 75 % of lung tumors do not pos-
sess these molecular alterations [16]. The high sensitivity
and low specificity of these diagnostic molecules is a mo-
tivation to research into new diagnostic models.
DNA methylation is an emerging diagnostic technology

to measure the epigenetic changes in the DNA, character-
ized by the addition of a methyl group in regions of the
DNA known by having CpG islands. Traditionally, gene
expression has been used as a prognostic biomarker for
lung carcinoma, and differentially expressed genes between
lung cancer subtypes have been found [17]. However, it
has been suggested that DNA methylation signatures of
cancer should also be considered as a potential diagnostic
biomarker of the disease [18]. Distinct DNA methylation
signatures exist between ADC and SCC [19], and also be-
tween tumor tissue and normal surrounding tissue [20].
Since DNA methylation plays a significant role in the regu-
lation of gene expression [21], there is an added value of
investigating both data types.
Computational modeling methods, such as Bayesian

classifiers, have been used successfully to model the com-
plexity of genomic data. A study by Chang and Ramoni
[22], yielded very high classification performance (accuracy
= 0.95) to distinguish between lung tumor ADC and lung
tumor SCC. Despite these results, the study still has open
questions that are significant for the cause of precision
medicine. For instance, selecting appropriate tissue samples
to maximize microarray analysis is a big challenge. Inad-
equate biopsies can cause misdiagnosis and delay appropri-
ate treatment [23]. In some cases, the amount of tissue
available in the biopsy might not be enough to make a diag-
nosis from pathology and characterize the DNA changes in
the cancer cells.
A major challenge of our study is the lack of tissue

availability in public datasets. Typically, a biopsy tissue
represents a very small portion of the lung. In spite of
ultrasound guidance, it is easy to miss a small focal
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malignancy, and end up retrieving tumor-adjacent
histologically-normal tissue (TAHN) along with Tumor
tissue. In those cases, the biopsy is discarded if it can-
not retrieve more than 50 % of tumor tissue [9]. The
patient would have to undergo a new procedure to ob-
tain another biopsy. Thus, it is worth exploring compu-
tational alternatives for classifying lung cancer subtypes
given a small biopsy sample and a mix of TAHN and
tumor tissue.
Our goal in this work was to test whether computa-

tional modeling can be a viable approach to accurately
differentiate between lung cancer subtypes, given mo-
lecular profiles of tumor tissue using DNA methylation
data. Specifically, we tested the hypothesis that “Bayesian
modeling is sufficient to classify lung cancer subtypes,
regardless of the tissue sample being tumor or tumor-
adjacent.” In this paper, we evaluated the ability of a
Bayesian classifier to accurately differentiate lung cancer
subtypes using real lung cancer molecular profiling data
sets that are also publicly available.

Methods
Datasets
To test our hypothesis, we extracted datasets containing
gene expression and DNA methylation beta values from
the Cancer Genome Atlas (TCGA) data portal for lung
adenocarcinoma (LUAD [24]) and lung squamous cell car-
cinoma (LUSC, [25]). Additionally, we also used the gene
expression dataset of lung adenocarcinoma patients, de-
scribed by Landi et al. [26], GEO accession number
GDS3257. Table 1 describes the characteristics of the sam-
ples we used for this study. For each dataset, it provides
information on the type of ‘omic’ data type, source of
data, assay platform, including number of features (i.e.
genes or DNA methylation sites), and the number of sam-
ple distribution – that is, tumor tissue (T and TAHN) –
within each subtype, where available. The formatted
TCGA dataset used in this study, along with sample IDs,
are provided in Additional file 1 (TAHNADC vs. Tumor-
ADC in gene expression), Additional file 2 (TAHNSCC vs.

TumorSCC in gene expression), and Additional file 3
(TAHNADC vs. TumorADC in methylation). The annota-
tions from TCGA to identify these samples are provided
in Additional file 4 (Appendix A).

Experimental design
We followed a supervised classification process on 10-
fold cross-validation. That is, for each fold we parti-
tioned the dataset into training and test, where the
former contains 90 % of the samples, while the latter
contains the remaining 10 %. We ensured that each par-
tition maintains the same class distribution as the whole
dataset (stratified). In each fold, we analyzed the datasets
using the experimental design as illustrated in Fig. 1. Ac-
cording to the design, there are four main components,
namely, a) Feature Selection, b) Discretization, c) Model
Building and d) Evaluation. We additionally perform
Gene Functional Analysis, and apply Clustering methods
to better understand the characteristics of the features
chosen by this framework. Below, we explain each com-
ponent in detail.

Feature selection
High-throughput platforms, such as gene expression and
methylation microarrays, generate high-dimensional data
that is typically very complex for analysis. Feature selec-
tion is a machine learning pre-processing step that tries
to find a subset of the original variables (also called fea-
tures or attributes) that are highly associated with the
target class variable (i.e. phenotype, like a disease state).
We used the ReliefF algorithm [27] to rank all variables
and select the top scoring ones. ReliefF is a multivariate
filter algorithm that estimates how well a given variable
can distinguish the target class given the instances that
are near to each other. The initial number of variables
(17,814 in gene expression, and 27,578 in methylation) is
reduced to the top 30 scoring variables. In previous
studies [28], it has been reported that 30 is a sufficient
number of genes to create computational classification
models. With this number of genes, the classification
models created would have a good trade-off between
relevance and complexity of the model.
Similarly, we also selected the differentially expressed

(DE) genes and differentially methylated (DM) probe sites
from each dataset using Limma, which is an R-language
package for the analysis of microarray data [29]. Limma
uses a t-statistic to rank genes in order of evidence for dif-
ferential expression. It first fits linear models for each gene
(lmFit), and then it uses empirical Bayes (eBayes) moder-
ation to adjust the standard error of the models by bor-
rowing information from the rest of the genes (average
variance across all genes). This method is very effective in
finding differentially expressed (DE) genes in microarray
data, however with methylation datasets it has not been

Table 1 Datasets and sample distributions

Dataset Source Tissue type ADC SCC

GEO: GDS3257
(gene expression)

Tumor 58 ***

TAHN 49 ***

TCGA: LUAD+LUSC
(gene expression)

Tumor 32 153

TAHN *** ***

TCGA: LUAD+LUSC
(DNA methylation)

Tumor 65 132

TAHN 24 27

See challenge in Background on lack of TAHN tissue availability (***). GEO
gene expression platform: Affymetrix Human Genome U133A Array (22,283
features), TCGA gene expression platform: Agilent 244 K Custom Gene
Expression (17,814 features). TCGA methylation platform: Illumina Infinium
HumanMethylation 27 k (27,578 features)
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equally successful [30]. The output of finding the DE
genes and DM probe sites with Limma can be seen as a
feature selection method (or ranked list). Similarly to the
ReliefF selection, we selected the top 30 most DE genes
and DM probe sites (based on log2-fold change) to build a
classifier for comparison with ReliefF. The output of the
resulting classifiers was evaluated using the area under the
receiver operating characteristic curve (AUC) perform-
ance metric in the test datasets.

Discretization
Most ‘omic’ data such as gene expression and methylation
are represented with continuous values. However, many
machine learning algorithms are designed to only handle
discrete (categorical) data, using nominal variables, while
real-world applications, like ‘omic’ data analysis, typically
involves continuous-valued variables. Discretization, the
process of transforming continuous values into discrete
ones, has been shown to improve the performance of ma-
chine learning classifiers [31]. To discretize the variables,
we used the Fayyad and Irani’s minimum description
length principle cut (MDLPC) [32]. This method, which is
widely used in the machine learning community, applies a
supervised greedy search strategy to recursively find the

minimal number of cut-points in each variable that mini-
mizes the entropy of the resulting subintervals.
For continuous methylation values ranging from 0 to 1,

three possible strategies for discretization can occur. The
first strategy is when a fixed cut-point is determined arbi-
trarily for all variables (for example, choosing > 0.5 methyl-
ated, while ≤ 0.5 could refer to unmethylated). The second
strategy, when an expert-based discretization is made for
all variables (i.e. unmethylated < 0.1, partially methylated
between 0.1 and 0.8, and methylated > 0.8 [33]). The third
strategy is when a supervised discretization method creates
independent cut-points for each variable. For the first and
second strategies, the same discretization scheme (i.e. same
number of intervals or cut-points) is used for all variables.
However, this approach is suboptimal for a classification
task. For instance, when using MDLPC we observed that
the methylation site cg19782598 was discretized into two
categories: methylated (>0.86) and unmethylated (≤0.86);
while methylation site cg11693019 was discretized into
three categories: methylated (>0.76), partially methylated
(between 0.76 and 0.47), and unmethylated (<0.47). Thus,
supervised discretization could help identify appropriate
cut-points for each variable, as opposed to the others,
which naïvely assume the same cut-points for variables.

Fig. 1 Cross-validation (10-folds) experimental design for a particular classification task, using feature selection and discretization. There are three
outcomes: a simple naïve Bayesian model with its test evaluation; clustering of samples based on selected genes; and gene enrichment analysis.
Algorithms: ReliefF, Limma, minimum description length principle cut (MDLPC). Evaluation: area under the receiver operating characteristic (AUC),
95 % confidence interval (CI), and Brier Skill Score (BSS)
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Clustering
In computational genomics, heatmaps are used to graph-
ically show the level of expression that a selected group of
genes have in a cohort of patient samples. A heatmap can
also be built with methylation intensity values. We build
heatmaps from the genes selected by Limma and ReliefF
to further validate the results obtained with these feature
selection methods. The clusters are a visual representation
of the class discrimination ability of the genes selected.
The order in which genes (rows) and samples (col-

umns) are ordered in the heatmap matrix is often based
on an agglomerative hierarchical clustering. We used the
Minkowski measure to calculate the pairwise distances be-
tween elements, and then aggregated the closest elements
in clusters using the Ward linkage calculation of distances
between clusters. This combination of Minkowski distance
and Ward linkage has been shown to perform well in bio-
medical and synthetic datasets [34].

Gene functional analysis
We also performed Gene Functional Analysis using QIA-
GEN’s Ingenuity® Pathway Analysis tool (IPA®, QIAGEN
Redwood City, www.ingenuity.com) to gain insight into
the biological role of the genes selected by our framework.
First, all gene symbols selected were used as input for the
IPA platform, which will search for correlations between
these genes and functions or pathways in their curated lit-
erature. A p-value is computed using Fisher’s right-tailed
exact test for the gene list to a function/pathway it may be
associated with. The p-values indicate the likelihood of as-
sociation between the gene set (as selected by ReliefF) and
a specific function (set of genes associated with a function)
to have occurred due to random chance alone. A p-value
of less than 0.05 is considered to be significantly better
than random chance. Methylation probe sites were
mapped into their corresponding gene symbols that they
methylate.

Model building
In the machine learning literature, a classifier is a compu-
tational model that can differentiate between two (or
more) states of disease. Bayesian networks [35] are par-
ticularly useful classifiers that are very popular in the clas-
sification of biomedical data. A Bayesian network (BN) is
a probabilistic graphical representation of random vari-
ables (nodes) and probabilistic dependencies among them
(arcs). Once a Bayesian network is learned, the structure
and conditional probability tables can be used to calculate
the posterior probabilities for a new case to be a member
of a given class, i.e. the probabilities of a new case being
ADC given the BN and the data. P(ADC =True|BN, data).
A special case of BN is the naïve Bayesian classifier (NB),
which assumes a strong conditional independence among
the variables. In a NB structure, the target node (i.e. class

variable) is the parent for all other features, and there are
no arcs among those children nodes. The child nodes are
independent given the parent, which facilitates the calcu-
lation of posterior probabilities by substituting the joint
probability with the product of their probabilities. NBs
have been shown to predict poorly in high-dimensional
genomic datasets [36], but it is expected that the use of a
feature selection method (ReliefF or Limma) will improve
the NB classification performance. Moreover, its simplicity
makes it a powerful tool to be considered in a biomedical
classification framework, while giving us insights into the
baseline performance on a given dataset.

Evaluation
We evaluated the NB classifiers using the area under the
receiver operating characteristic (AUC), which is a meas-
urement of the area created by plotting the performance
of a classifier for the true positive rate versus the false
positive rate. When presented with a test dataset, the
Bayesian network calculates a posterior probability for
every case, and a threshold is used to assign the class for
the new cases. The curve is constructed by varying the
threshold to which the probability is considered for class
determination. Also, the 95 % confidence interval (C.I.)
of the AUC was calculated using DeLong’s method for
variance estimation [37].
AUC (equivalent to c-statistic) is a useful measure-

ment of the ability of models to discriminate between
two (or more) classes [38]. Calibration deals with agree-
ment between observed outcomes and predictions. For
this purpose, we used the Brier Skill Score (BSS) [39]
creates an index between −1 and 1 that provides infor-
mation as of how far away the results of any classifier
are in relation to the unskilled classifier. The unskilled
classifier is one that only considers the distribution of
data. A classifier with a positive BSS would therefore be
skilled and unbiased.

Results
We investigated four classification tasks depending on
the tissue type. These tasks test our hypothesis that the
TAHN tissue has distinct genomic signatures that can
differentiate among non-small cell lung cancer subtypes.
We describe the classification tasks as follows:

1. TAHNADC vs. TumorADC, and TAHNSCC vs
TumorSCC, searches for molecular differences
between tumor tissue and TAHN tissue. These tasks
are only applied to one lung cancer subtype at a
time, either adenocarcinoma or squamous cell
carcinoma patients;

2. TumorADC vs. TumorSCC, which searches for
molecular differences between subtypes using only
Tumor tissue;
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3. TAHNADC vs. TAHNSCC, which searches for
molecular differences between subtypes using only
TAHN tissue; and

4. TAHN-TumorADC vs. TAHN-TumorSCC, which
searches for molecular differences between subtypes
using both TAHN and Tumor tissue.

The classification performance for every naïve Bayes
classifier was calculated by averaging the AUCs over all
folds from the experimental design illustrated in Fig. 1.
Table 2 shows results for the classification tasks, in-
cluding 95 % confidence interval (C.I.) and Brier Skill
Score (BSS) as a calibration measurement. Contingency
tables for these models can be seen in Additional file 4
(Appendix B).
All classification tasks achieved high predictive perfor-

mances with AUC values higher than 0.8. For these data-
sets, the classification performance was similar between
the NB classifiers created after applying ReliefF and
Limma as feature selection methods. Limma is a popular
method, among the genomics community, for the selec-
tion of differentially expressed genes, but it is not used
as a feature selection method by the machine learning
community. In contrast, ReliefF is a popular method
among machine learning studies but not widely used in
genomic studies. Figure 2 shows heatmaps and clusters
for each classification task with the methylation probe
sites selected using ReliefF.
We analyzed the genes found by ReliefF in the classifi-

cation task of TAHN-TumorADC vs TAHN-TumorSCC
using IPA®. The results of the IPA® core analysis show a
significant association between ReliefF-selected genes
and the following diseases: cancer (25 out of 27) con-
nective tissue disorder (13 out of 27), dermatological dis-
eases and conditions (13 out of 27). Interestingly, the
ReliefF-selected genes (19 out of 27) are associated with
either adenocarcinoma (16 genes), squamous-cell carcin-
oma (4 genes) or carcinoma of the lung (4 genes). The
list of genes and their associations can be seen in Table 3.

Using these interesting 19 genes, we generated a gene
interaction network to graphically visualize the relation-
ships between genes and the disease class (adenocarcin-
oma, squamous-cell carcinoma and carcinoma of the
lung). The network is illustrated in Fig. 3.

Discussion
Evaluation of classifiers
The classification performance for all models is high (A
UC≥0:81), with positive calibration (BSS > 0). This posi-
tive calibration is a good indication that the models will
perform well for other cases, and that they were not
biased by the distribution of the data.
In the classification task of TAHNADC vs. TumorADC,

the naïve Bayesian model created obtained high predict-
ive performances (AUC≥0:99withReliefF; and≥0:81with
Limma). The classification task TAHNSCC vs. TumorSCC
also obtained high predictive performances (≥0:99with
both feature selectionmethods ). The molecular differ-
ences between TAHN and tumor tissue show distinctive
signatures regardless of ‘omic’ dataset, feature selection
method or lung cancer subtype. The results for these
classification tasks were as expected since the tissue
architecture between TAHN and Tumor is recognizable
under a microscope if enough tissue samples are pro-
vided. They also could be achieved with the relatively
small number of normal tissues available for analysis,
since these normal tissues are very homogenous in ex-
pression and methylation features.
In the classification task of TumorADC vs. TumorSCC the

predictive performance was very high (AUC≥0:89; forgene
expression; and≥0:89withmethylation ). Previous studies
for the same classification task also show a similar classifi-
cation performance. For example, Ben-Hamo et al. [40] cor-
rectly classified 85 %, using linear models. Meanwhile, Cai
et al. [10] obtained an accuracy of 86 % using ensemble
methods; Li et al. [41] achieved an AUC of 0.98 using Sup-
port Vector Machines; and Zhang et al. [42] achieved AUCs
of 0.89 using naïve Bayesian models. Similarly, the study by

Table 2 AUC classification performance for different classification tasks

Classification Task Omic Feature selection with ReliefF Feature selection with Limma

AUC 95 % C.I. BSS AUC 95 % C.I. BSS

TAHNADC vs. TumorADC G 0.99 0.97–1.0 0.89 0.94 0.82–1.0 0.73

M 1.0 1.0–1.0 0.99 0.81 0.58–0.97 0.17

TAHNSCC vs. TumorSCC M 1.0 0.99–1.0 0.94 0.99 0.96–1.0 0.66

TumorADC vs. TumorSCC G 0.89 0.83–0.96 0.29 0.90 0.89–0.9 0.81

M 0.97 0.94–0.99 0.71 0.89 0.74–1.0 0.38

TAHNADC vs. TAHNSCC M 1.0 1.0–1.0 0.92 1.0 1.0–1.0 0.99

TAHN-TumorADC vs. TAHN-TumorSCC M 0.92 0.89–0.95 0.42 0.94 0.87–1.0 0.56

G: gene expression, M: DNA methylation. The Brier Skill Score is a measurement of calibration of the classifier. A positive value on the BSS means that the classifier
is well calibrated. A baseline classification is the work by Chang and Ramoni [22] which obtained an accuracy of 0.95 in the classification task TumorADC
vs. TumorSCC
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Chang and Ramoni [22] achieved an accuracy of 0.95, using
naïve Bayesian models. It is worth noting that none of
these studies used methylation datasets and they fail to
clearly recognize the importance of TAHN tissue for
classification.
The classification task of TAHNADC vs. TAHNSCC also

had very high evaluation performances (AUC ¼ 1). This
high performance means that all samples were correctly
classified. We hypothesize that an explanation of this ex-
cellent result can be attributed to the distinctive epigenetic
differences between lung tissues. We did not evaluate the
gene expression in this classification task due to the lack
of an available dataset. To the best of our knowledge
reporting of TAHN tissue in public repositories is still an
open challenge that should be addressed to improve ex-
perimental designs of other studies. A study by Haaland et
al. [43], showed that there are differentially expressed
genes between TAHN tissues in prostate cancer. In our
study, we investigate DNA methylation data to indicate
that the same differences could also be found in lung can-
cer TAHN tissues, and we hypothesize that the use of
TAHN tissues might also help in the classification per-
formance of other cancer types.
The classification task of TAHN-TumorADC vs. TAHN-

TumorSCC is a novel approach, where a mix of tissue types
are used to classify between lung cancer subtypes. The
noise introduced by mixing tissue types is overcome by
our experimental design, which was able to obtain a very
good classification performance (AUC≥0:92). Despite, the
‘noisy’ tissue samples, a simple naïve Bayesian classifier
can accurately classify between lung cancer subtypes. This
classification performance is confirmed by the heatmap
analysis in Fig. 2c, where the tumor tissue of ADC creates
a distinct cluster, while the remaining samples cluster

together in three distinct subclusters. Furthermore, our
Gene Functional Analysis using IPA® shows strong associ-
ations to cancer pathways, with 19 genes found to be asso-
ciated with adenocarcinoma, squamous-cell carcinoma
and carcinoma of the lung. Out of these 19 genes we
found 4 genes associated specifically with lung cancer sub-
types: AKR1B10, AQP10, CXCR2, TP73.

The value of using TAHN tissue for classification
Lung cancer patients could benefit with a potentially novel
approach for subtyping. The diagnosis of adenocarcinoma
vs. squamous cell carcinoma is routinely accomplished
using histology supplemented by immunohistochemistry
(TTF-1 and p63/p40). It is therefore not likely that our ap-
proach would change this practice, which is well estab-
lished, quick and inexpensive. Rather, we suggest that the
use of epigenomic changes could help in the small number
of tumors which remain difficult to classify. However, the
primary importance of our work may be in providing add-
itional understanding of the origins of squamous cell and
adenocarcinomas, which suggest that these phenotypes are
associated with, or perhaps even derived from, different
epigenomic phenotypes. Epigenomic alterations, in the
form of DNA methylation, prevent the binding of tran-
scription machinery, resulting in gene silencing [44]. More-
over, DNA methylation signatures are different between
tissue types and between tumors and normal surrounding
tissue [20]. In our study, tumor-adjacent histologically nor-
mal tissue samples were used to classify lung cancer sub-
types with excellent results. This classification performance
was achieved when no tumor samples were involved
(TAHNADC vs. TAHNSCC), and when a mix of tissue was
used (TAHN-TumorADC vs. TAHN-TumorSCC). The high

Fig. 2 Heatmaps for classification task a TAHNADC vs. TAHNSCC, b TumorADC vs. TumorSCC and c TAHN-TumorADC vs. TAHN-TumorSCC using the
ReliefF feature selection algorithm. In the vertical axis the corresponding methylation site and gene symbol (in parenthesis) are shown. Some
methylation sites do not lie in a particular gene, therefore, no symbol is provided. When multiple methylation sites are selected for the same
gene, these sites should have similar methylation intensity, for it to be included. In the horizontal axis, a color-coded representation of the tissue
samples is provided. Two distinct groups are observed in all three heatmaps. Cluster purity (accuracy by classification using clustering) for each
task is calculated to be 1.0, 0.94 and 0.85 respectively
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AUC results are an indication of the diagnostic potential of
this technology.

Limitations and future work
Our study had some limitations, which include the follow-
ing: 1) There were a limited number of tumor-adjacent
histologically normal tissue samples used. However, the
homogeneity of these normal tissues we observed suggests
that additional normal tissues would not improve the clas-
sifier. 2) The resulting classifiers were not validated in an-
other dataset outside of TCGA lung samples. 3) Each
‘omic’ classifier is independent of one another. In the fu-
ture, we would like to explore data integration models in a
multi-omic approach. 4) The classification problem of dis-
criminating cancer subtypes of adenocarcinoma and
squamous cell carcinoma could also be explored in a pan-
cancer analysis, to validate the same finding seen in our

study of lung cancer subtypes. 5) Due to the challenge of
data availability, in this study we did not analyze biopsies
with varying percentages of tumor and TAHN tissue
(mixed biopsies). Instead, we took relatively ‘pure’ biopsies
of either tumor or TAHN to classify between lung cancer
subtypes. A future study could consider the molecular
classification or discovery of cancer given a mixture of
tumor and TAHN tissue. For example, an analysis of
‘omic’ data from cancerous and non-cancerous tumor
tissues, as well as TAHN tissue for both types of tu-
mors, might be performed in the same way as pre-
sented in this manuscript.

Conclusions
In this paper, we addressed the issue of lung cancer sub-
typing using DNA methylation data from TAHN tissue,
which is a novel strategy for classification of non-small

Table 3 Genes selected for the classification task of TAHN-TumorADC Vs. TAHN-TumorSCC
Gene Symbol Gene Name Known Literature Evidence to Cancer

ST18 suppression of tumorigenicity 18, zinc finger Yes [45]

CSTA cystatin A (stefin A) Yes [45, 46]

LPP LIM domain containing preferred translocation partner in lipoma Yes [45]

CROT carnitine O-octanoyltransferase Yes [45]

BDKRB1 bradykinin receptor B1 Yes [47]

AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase) Yes [48]

TP73 tumor protein p73 Yes [49–51]

EFCAB3 EF-hand calcium binding domain 3 Yes

RREB1 ras responsive element binding protein 1 Yes [45]

HIST1H4G histone cluster 1, H4g No

STAR steroidogenic acute regulatory protein Yes

ACSBG2 acyl-CoA synthetase bubblegum family member 2 Yes [45]

DQX1 DEAQ box RNA-dependent ATPase 1 Yes [45]

AQP10 aquaporin 10 Yes [45]

PLEKHA6 pleckstrin homology domain containing, family A member 6 Yes [52, 53]

GCSAM germinal center-associated, signaling and motility No

WFDC5 WAP four-disulfide core domain 5 Yes

KRT7 keratin 7, type II Yes [54]

DCST2 DC-STAMP domain containing 2 Yes [45]

CALML3 calmodulin-like 3 Yes

ACAP3 ArfGAP with coiled-coil, ankyrin repeat and PH domains 3 Yes

LRRC17 leucine rich repeat containing 17 Yes [45]

TRIM29 tripartite motif containing 29 Yes [55]

CXCR2 chemokine (C-X-C motif) receptor 2 Yes [45, 56, 57]

HOXD9 homeobox D9 Yes [58]

COL17A1 collagen, type XVII, alpha 1 Yes [45]

LMO3 LIM domain only 3 (rhombotin-like 2) Yes

The list of genes is ordered by their ranks, as selected by ReliefF for the classification task of TAHN-TumorADC Vs. TAHN-TumorSCC. The Entrez gene symbol, and
the gene name are listed in the first two columns respectively. The ‘Known Literature Evidence to Cancer’ indicates if links to cancer were detected by the IPA®
software. Citations are provided to literature indicating links to adenocarcinoma, squamous-cell carcinoma and carcinoma in lung
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cell lung cancer samples. This study demonstrated that
using computational Bayesian modeling, it is possible to
discover the molecular differences between tumor and
tumor-adjacent tissue of lung cancer patients. This dis-
covery will allow clinicians to use the available biopsy
material without worrying about its tissue composition,
yielding in less invasive diagnostic procedures for the pa-
tient. We hope that our results will encourage re-
searchers to also make use of TAHN tissue samples
generated in their laboratories for predictive modeling
and make this data available for public use. As more
data becomes available, our models can be further im-
proved, and future discoveries could be made in other
cancers.

Availability of supporting data
The datasets used in this study are publicly available from
The Cancer Genome Atlas (https://tcga-data.nci.nih.gov/
tcga/) in datasets LUAD and LUSC; and also from the
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo/), accession number GDS3257. The formatted datasets
used in this study, along with sample IDs, are provided in
Additional file 1 (TAHNADC vs. TumorADC in gene expres-
sion), Additional file 2 (TAHNSCC vs. TumorSCC in gene
expression), and Additional file 3 (TAHNADC vs. Tumor-
ADC in methylation). The annotations from TCGA to
identify these samples are provided in Additional file 4
(Appendix A).

Additional files

Additional file 1: Formatted TCGA dataset used in this study, along
with sample IDs for classification task TAHNADC vs.TumorADC in gene
expression. (CSV 5182 kb)

Additional file 2: Formatted TCGA dataset used in this study, along
with sample IDs for classification task TAHNSCC vs.TumorSCC in gene
expression. (CSV 24086 kb)

Additional file 3: Formatted TCGA dataset used in this study, along
with sample IDs for classification task TAHNADC vs.TumorADC in DNA
methylation. (CSV 41150 kb)

Additional file 4: Appendix A shows the Cancer Genome Atlas
annotations to identify the types of samples used in this study.Appendix
B shows additional performance measures for the models described.
(DOCX 106 kb)
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