22 research outputs found

    Seismic Exploration Using Active Sources at Kuchierabujima Volcano, Southwest Japan

    Get PDF
    Seismic exploration using artificial sources was conducted at Kuchierabujima volcano, southwest Japan in November 2004 by 40 participants from 9 national universities andJapan Meteorological Agency to investigate the subsurface seismic structure. The exploration was the 11th joint experiment under the National Project for Prediction of Volcanic Eruptions. A total of 183 temporal stations equippedwith a 2 Hz vertical component seismometer (including 75 3component seismometers) and a portable data logger were deployed on Kuchierabu Island. Dynamite shots with charges of 10-115 kg were detonated at 19 locations, and seismic signals were successfully recorded. To reveal the P-wave velocity structure, 2955 arrival times of the first motion were picked from the seismograms, and 2187 were classified into ranks A and B. From the record sections and the arrival time data, characteristics reflecting the geological structure were identified. Refracted waves of 5 km/s were observed at stations>5km from the shot points. Apparent velocities near the shot points depend on the surface geology around the shots. P-wave arrived earlier at stations near the summits. Strongly scattered waves were observed similarly near the summits

    Depolymerization of Polyesters by Transesterification with Ethanol Using (Cyclopentadienyl)titanium Trichlorides

    No full text
    Exclusive chemical conversions of polyesters [poly(ethylene adipate) (PEA), poly(butylene adipate) (PBA), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT)] to the corresponding monomers (diethyl adipate, diethyl terephthalate, ethylene glycol, 1,4-butane diol) by transesterification with ethanol using Cp’TiCl3 (Cp’ = Cp, Cp*) catalyst have been demonstrated. The present acid-base-free depolymerizations by Cp’TiCl3 exhibited completed conversions (>99%) of PET, PBT to afford diethyl terephthalate and ethylene glycol or 1,4-butane diol exclusively (selectivity >99%) without formation of any other by-products in the NMR spectra (150–170 °C, Ti 1.0, or 2.0 mol%). The resultant reaction mixture after the depolymerization of PBA with ethanol via the CpTiCl3 catalyst (1.0 mol%, 150 °C, 3 h), consisting of diethyl adipate and 1,4-butane diol, was heated at 150 °C in vacuo for 24 h to afford high molecular weight recycled PBA with unimodal molecular weight distribution (Mn = 11,800, Mw/Mn = 1.6), strongly demonstrating a possibility of one-pot (acid-base-free) closed-loop chemical recycling

    Indium-Catalyzed Direct Conversion of Lactones into Thiolactones Using a Disilathiane as a Sulfur Source

    No full text
    An indium-catalyzed reaction of lactones and a disilathiane leading to thiolactones is described. The direct synthesis of thiolactones from lactones with an appropriate sulfur source is one of the most attractive approaches in organic and pharmaceutical chemistry. In this context, we found an indium-catalyzed direct conversion of lactones into thiolactones in the presence of elemental sulfur and a hydrosilane via formation of the disilathiane in situ. On the basis of the previous reaction, the application utilizing the disilathiane as a sulfur source was performed herein for the efficient synthesis of a variety of thiolactone derivatives from lactones by an indium catalyst

    A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen

    Get PDF
    The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS). We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery

    Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter

    No full text
    The combination of a catalytic amount of InCl<sub>3</sub> and acetic anhydride remarkably promotes the Knoevenagel condensation of a variety of aldehydes and activated methylene compounds. This catalytic system accommodates aromatic aldehydes containing a variety of electron-donating and -withdrawing groups, heteroaromatic aldehydes, conjugate aldehydes, and aliphatic aldehydes. Central to successfully driving the condensation series is the formation of a geminal diacetate intermediate, which was generated in situ from an aldehyde and an acid anhydride with the assistance of an indium catalyst
    corecore