54 research outputs found
Radial and vertical angular momentum transport in protostellar discs
Angular momentum in protostellar discs can be transported either radially,
through turbulence induced by the magnetorotational instability (MRI), or
vertically, through the torque exerted by a large-scale magnetic field. We
present a model of steady-state discs where these two mechanisms operate at the
same radius and derive approximate criteria for their occurrence in an
ambipolar diffusion dominated disc. We obtain "weak field'' solutions - which
we associate with the MRI channel modes in a stratified disc - and transform
them into accretion solutions with predominantly radial angular-momentum
transport by implementing a turbulent-stress prescription based on published
results of numerical simulations. We also analyze "intermediate field
strength'' solutions in which both radial and vertical transport operate at the
same radial location. Our results suggest, however, that this overlap is
unlikely to occur in real discs.Comment: 5 pages, 2 figures, 1 table, aastex.cls. Accepted for publication in
Astrophysics & Space Scienc
Self-similar solutions of viscous and resistive ADAFs with thermal conduction
We have studied the effects of thermal conduction on the structure of viscous
and resistive advection-dominated accretion flows (ADAFs). The importance of
thermal conduction on hot accretion flow is confirmed by observations of hot
gas that surrounds Sgr A and a few other nearby galactic nuclei. In this
research, thermal conduction is studied by a saturated form of it, as is
appropriated for weakly-collisional systems. It is assumed the viscosity and
the magnetic diffusivity are due to turbulence and dissipation in the flow. The
viscosity also is due to angular momentum transport. Here, the magnetic
diffusivity and the kinematic viscosity are not constant and vary by position
and -prescription is used for them. The govern equations on system have
been solved by the steady self-similar method. The solutions show the radial
velocity is highly subsonic and the rotational velocity behaves sub-Keplerian.
The rotational velocity for a specific value of the thermal conduction
coefficient becomes zero. This amount of conductivity strongly depends on
magnetic pressure fraction, magnetic Prandtl number, and viscosity parameter.
Comparison of energy transport by thermal conduction with the other energy
mechanisms implies that thermal conduction can be a significant energy
mechanism in resistive and magnetized ADAFs. This property is confirmed by
non-ideal magnetohydrodynamics (MHD) simulations.Comment: 8 pages, 5 figures, accepted by Ap&S
Dynamics of Phase Transitions by Hysteresis Methods I
In studies of the QCD deconfining phase transition or crossover by means of
heavy ion experiments, one ought to be concerned about non-equilibrium effects
due to heating and cooling of the system. Motivated by this, we look at
hysteresis methods to study the dynamics of phase transitions. Our systems are
temperature driven through the phase transition using updating procedures in
the Glauber universality class. Hysteresis calculations are presented for a
number of observables, including the (internal) energy, properties of
Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d
Potts models, which provide a rich collection of phase transitions with a
number of rigorously known properties. Comparing with equilibrium
configurations we find a scenario where the dynamics of the transition leads to
a spinodal decomposition which dominates the statistical properties of the
configurations. One may expect an enhancement of low energy gluon production
due to spinodal decomposition of the Polyakov loops, if such a scenario is
realized by nature.Comment: 12 pages, revised after referee report, to appear in Phys. Rev.
Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops
We discuss how to extract renormalized from bare Polyakov loops in SU(N)
lattice gauge theories at nonzero temperature in four spacetime dimensions.
Single loops in an irreducible representation are multiplicatively renormalized
without mixing, through a renormalization constant which depends upon both
representation and temperature. The values of renormalized loops in the four
lowest representations of SU(3) were measured numerically on small, coarse
lattices. We find that in magnitude, condensates for the sextet and octet loops
are approximately the square of the triplet loop. This agrees with a large
expansion, where factorization implies that the expectation values of loops in
adjoint and higher representations are just powers of fundamental and
anti-fundamental loops. For three colors, numerically the corrections to the
large relations are greatest for the sextet loop, ; these
represent corrections of for N=3. The values of the renormalized
triplet loop can be described by an SU(3) matrix model, with an effective
action dominated by the triplet loop. In several ways, the deconfining phase
transition for N=3 appears to be like that in the matrix model of
Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion
for clarity, results unchange
Theory of magnetically powered jets
The magnetic theory for the production of jets by accreting objects is
reviewed with emphasis on outstanding problem areas. An effort is made to show
the connections behind the occasionally diverging nomenclature in the
literature, to contrast the different points of view about basic mechanisms,
and to highlight concepts for interpreting the results of numerical
simulations. The role of dissipation of magnetic energy in accelerating the
flow is discussed, and its importance for explaining high Lorentz factors. The
collimation of jets to the observed narrow angles is discussed, including a
critical discussion of the role of `hoop stress'. The transition between disk
and outflow is one of the least understood parts of the magnetic theory; its
role in setting the mass flux in the wind, in possible modulations of the mass
flux, and the uncertainties in treating it realistically are discussed. Current
views on most of these problems are still strongly influenced by the
restriction to 2 dimensions (axisymmetry) in previous analytical and numerical
work; 3-D effects likely to be important are suggested. An interesting problem
area is the nature and origin of the strong, preferably highly ordered magnetic
fields known to work best for jet production. The observational evidence for
such fields and their behavior in numerical simulations is discussed. I argue
that the presence or absence of such fields may well be the `second parameter'
governing not only the presence of jets but also the X-ray spectra and timing
behavior of X-ray binaries.Comment: 29 pages. Publication delays offered the opportunity for further
corrections, an expansion of sect 4.2, and one more Fig. To appear in
Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect.
Notes Phys. 794 (2009
Formation of stars and planets: the role of magnetic fields
Star formation is thought to be triggered by gravitational collapse of the
dense cores of molecular clouds. Angular momentum conservation during the
collapse results in the progressive increase of the centrifugal force, which
eventually halts the inflow of material and leads to the development of a
central mass surrounded by a disc. In the presence of an angular momentum
transport mechanism, mass accretion onto the central object proceeds through
this disc, and it is believed that this is how stars typically gain most of
their mass. However, the mechanisms responsible for this transport of angular
momentum are not well understood. Although the gravitational field of a
companion star or even gravitational instabilities (particularly in massive
discs) may play a role, the most general mechanisms are turbulence viscosity
driven by the magnetorotational instability (MRI), and outflows accelerated
centrifugally from the surfaces of the disc. Both processes are powered by the
action of magnetic fields and are, in turn, likely to strongly affect the
structure, dynamics, evolutionary path and planet-forming capabilities of their
host discs. The weak ionisation of protostellar discs, however, may prevent the
magnetic field from effectively coupling to the gas and shear and driving these
processes. Here I examine the viability and properties of these
magnetically-driven processes in protostellar discs. The results indicate that,
despite the weak ionisation, the magnetic field is able to couple to the gas
and shear for fluid conditions thought to be satisfied over a wide range of
radii in these discs.Comment: Invited Review. 11 figures and 1 table. Accepted for publication in
Astrophysics & Space Scienc
General Overview of Black Hole Accretion Theory
I provide a broad overview of the basic theoretical paradigms of black hole
accretion flows. Models that make contact with observations continue to be
mostly based on the four decade old alpha stress prescription of Shakura &
Sunyaev (1973), and I discuss the properties of both radiatively efficient and
inefficient models, including their local properties, their expected stability
to secular perturbations, and how they might be tied together in global flow
geometries. The alpha stress is a prescription for turbulence, for which the
only existing plausible candidate is that which develops from the
magnetorotational instability (MRI). I therefore also review what is currently
known about the local properties of such turbulence, and the physical issues
that have been elucidated and that remain uncertain that are relevant for the
various alpha-based black hole accretion flow models.Comment: To be published in Space Science Reviews and as hard cover in the
Space Sciences Series of ISSI: The Physics of Accretion on to Black Holes
(Springer Publisher
- …