64 research outputs found

    Deep learning-based fully automatic segmentation of wrist cartilage in MR images

    Full text link
    The study objective was to investigate the performance of a dedicated convolutional neural network (CNN) optimized for wrist cartilage segmentation from 2D MR images. CNN utilized a planar architecture and patch-based (PB) training approach that ensured optimal performance in the presence of a limited amount of training data. The CNN was trained and validated in twenty multi-slice MRI datasets acquired with two different coils in eleven subjects (healthy volunteers and patients). The validation included a comparison with the alternative state-of-the-art CNN methods for the segmentation of joints from MR images and the ground-truth manual segmentation. When trained on the limited training data, the CNN outperformed significantly image-based and patch-based U-Net networks. Our PB-CNN also demonstrated a good agreement with manual segmentation (Sorensen-Dice similarity coefficient (DSC) = 0.81) in the representative (central coronal) slices with large amount of cartilage tissue. Reduced performance of the network for slices with a very limited amount of cartilage tissue suggests the need for fully 3D convolutional networks to provide uniform performance across the joint. The study also assessed inter- and intra-observer variability of the manual wrist cartilage segmentation (DSC=0.78-0.88 and 0.9, respectively). The proposed deep-learning-based segmentation of the wrist cartilage from MRI could facilitate research of novel imaging markers of wrist osteoarthritis to characterize its progression and response to therapy

    Characterization of surface motion patterns in highly deformable soft tissue organs from dynamic MRI: An application to assess 4D bladder motion

    Full text link
    Dynamic MRI may capture temporal anatomical changes in soft tissue organs with high contrast but the obtained sequences usually suffer from limited volume coverage which makes the high resolution reconstruction of organ shape trajectories a major challenge in temporal studies. Because of the variability of abdominal organ shapes across time and subjects, the objective of this study is to go towards 3D dense velocity measurements to fully cover the entire surface and to extract meaningful features characterizing the observed organ deformations and enabling clinical action or decision. We present a pipeline for characterization of bladder surface dynamics during deep respiratory movements. For a compact shape representation, the reconstructed temporal volumes were first used to establish subject-specific dynamical 4D mesh sequences using the LDDMM framework. Then, we performed a statistical characterization of organ dynamics from mechanical parameters such as mesh elongations and distortions. Since we refer to organs as non flat surfaces, we have also used the mean curvature changes as metric to quantify surface evolution. However, the numerical computation of curvature is strongly dependant on the surface parameterization. To cope with this dependency, we employed a new method for surface deformation analysis. Independent of parameterization and minimizing the length of the geodesic curves, it stretches smoothly the surface curves towards a sphere by minimizing a Dirichlet energy. An Eulerian PDE approach is used to derive a shape descriptor from the curve-shortening flow. Intercorrelations between individual motion patterns are computed using the Laplace Beltrami operator eigenfunctions for spherical mapping. Application to extracting characterization correlation curves for locally controlled simulated shape trajectories demonstrates the stability of the proposed shape descriptor.Comment: arXiv admin note: text overlap with arXiv:2003.0833

    Whole-muscle fat analysis identifies distal muscle end as disease initiation site in facioscapulohumeral muscular dystrophy

    No full text
    International audienceAbstract Background Facioscapulohumeral dystrophy (FSHD) is a major muscular dystrophy characterized by asymmetric fatty replacement of muscles. We aimed to determine the initiation site and progression profile of the disease in lower extremity muscles of FSHD patients by assessing fat infiltration along their full proximo-distal axis using quantitative MRI. Methods Nine patients underwent MRI of lower extremities to assess end-to-end muscle fat fractions (FFs) and inflammatory lesions. Seven patients underwent the same MRI ~3.5 years later. Individual muscles (n = 396) were semi-automatically segmented to calculate average FFs over all slices covering whole muscles. To assess disease progression we determined FF changes in 5 adjacent muscle segments. Results We provide evidence that fat replacement commonly starts at the distal end of affected muscles where the highest FFs occur (p < 0.001). It progresses in a wave-like manner in the proximal direction at an increasing rate with the highest value (4.9 ± 2.7%/year) for muscles with baseline FFs of 30–40%. Thereafter it proceeds at a slower pace towards the proximal muscle end. In early phases of disease, inflammatory lesions preferentially occur at the distal muscle end. Compared with whole-muscle analysis, the common FF assessments using only few MR slices centrally placed in muscles are significantly biased (~50% in progression rate). Conclusions These findings identify the distal end of leg muscles as a prime location for disease initiation in FSHD and demonstrate a wave-like progression towards the proximal end, consistent with proposed disease mechanisms. End-to-end whole-muscle fat assessment is essential to properly diagnose FSHD and its progression
    corecore