29 research outputs found

    Assessment of the effect of betaine on p16 and c-myc DNA methylation and mRNA expression in a chemical induced rat liver cancer model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of liver cancer may involve abnormal changes in DNA methylation, which lead to the activation of certain proto-oncogenes, such as <it>c-myc</it>, as well as the inactivation of certain tumor suppressors, such as <it>p16</it>. Betaine, as an active methyl-donor, maintains normal DNA methylation patterns. However, there are few investigations on the protective effect of betaine in hepatocarcinogenesis.</p> <p>Methods</p> <p>Four groups of rats were given diethylinitrosamine (DEN) and fed with AIN-93G diets supplemented with 0, 10, 20 or 40 g betaine/kg (model, 1%, 2%, and 4% betaine, respectively), while the control group, received no DEN, fed with AIN-93G diet. Eight or 15 weeks later, the expression of <it>p16 </it>and <it>c-myc </it>mRNA was examined by Real-time PCR (Q-PCR). The DNA methylation status within the <it>p16 </it>and <it>c-myc </it>promoter was analyzed using methylation-specific PCR.</p> <p>Results</p> <p>Compared with the model group, numbers and areas of glutathione S-transferase placental form (GST-p)-positive foci were decreased in the livers of the rats treated with betaine (<it>P < 0.05</it>). Although the frequency of <it>p16 </it>promoter methylation in livers of the four DEN-fed groups appeared to increase, there is no difference among these groups after 8 or 15 weeks (<it>P > 0.05</it>). Betaine supplementation attenuated the down-regulation of <it>p16 </it>and inhibited the up-regulation of <it>c-myc </it>induced by DEN in a dose-dependent manner (<it>P </it>< 0.01). Meanwhile, increases in levels of malondialdehyde (MDA) and glutathione S-transferase (GST) in model, 2% and 4% betaine groups were observed (<it>P < 0.05</it>). Finally, enhanced antioxidative capacity (T-AOC) was observed in both the 2% and 4% betaine groups.</p> <p>Conclusion</p> <p>Our data suggest that betaine attenuates DEN-induced damage in rat liver and reverses DEN-induced changes in mRNA levels.</p

    Feeding soy protein isolate and oils rich in omega-3 polyunsaturated fatty acids affected mineral balance, but not bone in a rat model of autosomal recessive polycystic kidney disease

    Get PDF
    Background: Polycystic kidney disease (PKD), a genetic disorder characterized by multiple cysts and renal failure at an early age. In children, kidney disease is often accompanied by disordered mineral metabolism, failure to achieve peak bone mass, and reduced adult height. Optimizing bone health during the growth stage may preserve against bone loss associated with early renal dysfunction in PKD. Dietary soy protein and omega-3 polyunsaturated fatty acid (n-3 PUFA) have been reported to ameliorate PKD and to promote bone health. The study objective was to determine the bone effects of feeding soy protein and/or n-3 PUFAs in a rat model of PKD.Methods: Weanling female PCK rats (n = 12/group) were randomly assigned to casein + corn oil (Casein + CO), casein + soybean oil (Casein + SO), soy protein isolate + soybean oil (SPI + SO) or soy protein isolate + 1:1 soybean oil:salmon oil blend (SPI + SB) for 12 weeks.Results: Rats fed SPI + SO diet had shorter (P = 0.001) femur length than casein-fed rats. Rats fed SPI + SO and SPI + SB diet had higher (P = 0.04) calcium (Ca) and phosphorus (P) retention. However, there were no significant differences in femur and tibial Ca, P or bone mass between diet groups. There were also no significant difference in bone microarchitecture measured by micro-computed tomography or bone strength determined by three-point bending test between diet groups.Conclusions: Early diet management of PKD using SPI and/or n-3 PUFAs influenced bone longitudinal growth and mineral balance, but neither worsened nor enhanced bone mineralization, microarchitecture or strength.Peer reviewedNutritional Science
    corecore