255 research outputs found

    Decontamination of mycoplasma-contaminated Orientia tsutsugamushi strains by repeating passages through cell cultures with antibiotics

    Get PDF
    Background: Mycoplasmas-contamination of Orientia tsutsugamushi, one of the obligated intracellular bacteria, is a very serious problem in in vitro studies using cell cultures because mycoplasmas have significant influence on the results of scientific studies. Only a recommended decontamination method is to passage the contaminated O. tsutsugamushi strains through mice to eliminate only mycoplasmas under influence of their immunity. However, this method sometimes does not work especially for low virulent strains of O. tsutsugamushi which are difficult to propagate in mice. In this study, we tried to eliminate mycoplasmas contaminants from both high virulent and low virulent strains of the contaminated O. tsutsugamushi by repeating passage through cell cultures with antibiotics in vitro. Results: We cultured a contaminated, high virulent strain of O. tsutsugamushi using a mouse lung fibroblasts cell line, L-929 cell in the culture medium containing lincomycin at various concentrations and repeated passages about every seven days. At the passage 5 only with 10 μg/ml of lincomycin, we did not detect mycoplasmas by two PCR based methods whereas O. tsutsugamushi continued good growth. During following four passages without lincomycin, mycoplasmas did not recover. These results suggested that mycoplasmas were completely eliminated from the high virulent strain of O. tsutsugamushi. Furthermore, by the same procedures with 10 μg/ml of lincomycin, we also eliminated mycoplasmas from a contaminated, low virulent strain of O. tsutsugamushi. Our additional assay showed that 50 μg/ml of lyncomycin did not inhibit the growth of O. tsutsugamushi, although MICs of many mycoplasmas contaminants were less than 6 μg/ml as shown previously. Conclusion: Our results showed an alternative method to eliminate mycoplasmas from the contaminated O. tsutsugamushi strains in place of in vivo passage through mice. Especially this notable method works for the decontamination not only from the high virulent strain also from the low virulent strain of O. tsutsugamushi. For further elimination, lincomycin at the limit concentration, which does not inhibit the growth of O. tsutsugamushi, can possibly eliminate most mycoplasmas from contaminated O. tsutsugamushi strains

    Optical-power-dependent splitting of magnetic resonance in nitrogen-vacancy centers in diamond

    Full text link
    Nitrogen-vacancy (NV) centers in diamonds are a powerful tool for accurate magnetic field measurements. The key is precisely estimating the field-dependent splitting width of the optically detected magnetic resonance (ODMR) spectra of the NV centers. In this study, we investigate the optical power dependence of the ODMR spectra using NV ensemble in nanodiamonds (NDs) and a single-crystal bulk diamond. We find that the splitting width exponentially decays and is saturated as the optical power increases. Comparison between NDs and a bulk sample shows that while the decay amplitude is sample-dependent, the optical power at which the decay saturates is almost sample-independent. We propose that this unexpected phenomenon is an intrinsic property of the NV center due to non-axisymmetry deformation or impurities. Our finding indicates that diamonds with less deformation are advantageous for accurate magnetic field measurements.Comment: 9 pages, 7 figure

    Thermal neutron flux evaluation by a single crystal CVD diamond detector in LHD deuterium experiment

    Get PDF
    The single crystal CVD diamond detector (SDD) was installed in the torus hall of the Large Helical Device (LHD) to measure neutrons with high time resolution and neutron energy resolution. The LiF foil with 95.62 % of 6Li isotope enrichment pasted on the detector was used as the thermal neutron convertor as the energetic ions of 2.0 MeV alpha and 2.7 MeV triton particles generated in LiF foil and deposited the energy into SDD. SDD were exposed to the neutron field in the torus hall of the LHD during the 2nd campaign of the deuterium experiment. The total pulse height in SDD was linearly propotional to the neutron yield in a plasma operation in LHD over 4 orders of magnitude. The energetic alpha and triton were separately measured by SDD with LiF with the thickness of 1.9 μm, although SDD with LiF with the thickness of 350 μm showed a broadened peak due to the large energy loss of energetic particles generated in the bulk of LiF. The modeling with MCNP and PHITS codes well interpreted the pulse height spectra for SDD with LiF with different thicknesses. The results above demonstrated the sufficient time resolution and energy discrimination of SDD used in this work

    A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling

    Get PDF
    SummaryThe gut epithelium self-renews every several days, providing an important innate defense system that limits bacterial colonization. Nevertheless, many bacterial pathogens, including Shigella, efficiently colonize the intestinal epithelium. Here, we show that the Shigella effector IpaB, when delivered into epithelial cells, causes cell-cycle arrest by targeting Mad2L2, an anaphase-promoting complex/cyclosome (APC) inhibitor. Cyclin B1 ubiquitination assays revealed that APC undergoes unscheduled activation due to IpaB interaction with the APC inhibitor Mad2L2. Synchronized HeLa cells infected with Shigella failed to accumulate Cyclin B1, Cdc20, and Plk1, causing cell-cycle arrest at the G2/M phase in an IpaB/Mad2L2-dependent manner. IpaB/Mad2L2-dependent cell-cycle arrest by Shigella infection was also demonstrated in rabbit intestinal crypt progenitors, and the IpaB-mediated arrest contributed to efficient colonization of the host cells. These results strongly indicate that Shigella employ special tactics to influence epithelial renewal in order to promote bacterial colonization of intestinal epithelium

    Novel mechanism of photoinduced reversible phase transitions in molecule-based magnets

    Full text link
    A novel microscopic mechanism of bi-directional structural changes is proposed for the photo-induced magnetic phase transition in Co-Fe Prussian blue analogues on the basis of ab initio quantum chemical cluster calculations. It is shown that the local potential energies of various spin states of Co are sensitive to the number of nearest neighbor Fe vacancies. As a result, the forward and backward structural changes are most readily initiated by excitation of different local regions by different photons. This mechanism suggests an effective strategy to realize photoinduced reversible phase transitions in a general system consisting of two local components.Comment: 4 pages, LaTex, 3 figures, to appear in Phys. Rev. Let
    • …
    corecore