429 research outputs found

    Solitonic Gravastars in a U(1) gauge Higgs model

    Full text link
    We numerically obtain gravastar solutions as nontopological solitons in a system that consists of a U(1) gauge Higgs model with a complex scalar field and Einstein gravity. The solitonic gravastar solutions are compact enough to have a photon sphere.Comment: 9 pages, 6 figure

    The successful strategy for mutual cooperation in the experimental multi-game contact

    Get PDF
    Playing multiple games simultaneously is popular, but we hardly know how people act in this situation to reach mutual cooperation in the long run. To answer the question, we conduct a series of experiments on multi-game contact. The results indicate that the number of information sets in the stage game and the payoff structure are important. We find that for making mutual cooperation subjects employ two types of TFT strategies, which simplify the complicated contact. In these strategies, they avoid separating behavior such as cooparating in one game but deviating in the other. This makes it easy for the opponents to understand thier cooperative intention

    An investigation on moisture and water absorption in cement paste with electrical resistance method

    Get PDF
    Moisture in concrete is one of main factors related to degradation and deterioration of concrete structure, and there are various moisture transport phenomena in concrete such as drying and absorbing. There are a lot of previous studies on the drying process of concrete to clarify the mechanisms of creep as well as shrinkage. However, few studies have been reported on the process of water absorption and moisture absorption although carbonation and chloride attack are strongly related to moisture and water absorbing. It is necessary to investigate moisture transfer in concrete in detail. This study investigated the moisture transfer in moisture and water absorbing processes in cement paste by using electrical resistance method to understand how moisture and water transfer into concrete. Cement paste specimens with water-to-cement ratios (W/Cs) of 0.35 and 0.55 were prepared in this study. Stainless steel rods of 0.9 mm in diameter were arranged at an interval of 4 mm in the specimen for measuring the electrical resistance. The specimens for moisture and water absorbing test were cured in water at 20 ºC for 28 days and stored at 20 ºC and a relative humidity of 0% and 70% as reference and the national average of the annual average relative humidity in Japan, respectively. The electrical resistances were measured through the stainless-steel rods and converted to electrical resistivity. The calibration test was also conducted to obtain the relationship between the electrical resistivity and the internal relative humidity (IRH), which was used to know IRH in cement paste specimen. As a result, the rate of moisture transfer in the specimen at initial internal relative humidity (IIRH) of 0% was higher than that at IIRH of 70%. Additionally, the rate of moisture transfer in the specimen at any IIRH depends on the total pore volume in the specimen

    Evoked potentials in patients with Angelman syndrome

    Get PDF
    Evoked potentials were studied in four cases with Angelman syndrome. Chromosome 15ql1-13 deletion was proved in two cases and paternal uniparental disomy was proved in the rest. Prolonged photo-evoked eyelid microvibration latencies were noted in all four, while visual evoked potential latencies remained within normal limits in three of four. Interpeak latencies of wave I to wave V in auditory brainstem response were prolonged in two of four. Short latency somatosensory evoked potential was examined in two cases and prolonged interpeak latency of wave P3 to wave N1 was noted in one case. Brink reflex was examined in one case and prolonged R2 latency was noted. These findings suggest that the brainstem is disturbed in cases with Angelman syndrome

    Methylglyoxal reduces molecular responsiveness to 4 weeks of endurance exercise in mouse plantaris muscle

    Get PDF
    Endurance exercise triggers skeletal muscle adaptations, including enhanced insulin signaling, glucose metabolism, and mitochondrial biogenesis. However, exercise-induced skeletal muscle adaptations may not occur in some cases, a condition known as exercise-resistance. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite and has detrimental effects on the body such as causing diabetic complications, mitochondrial dysfunction, and inflammation. This study aimed to clarify the effect of methylglyoxal on skeletal muscle molecular adaptations following endurance exercise. Mice were randomly divided into 4 groups (n = 12 per group): sedentary control group, voluntary exercise group, MG-treated group, and MG-treated with voluntary exercise group. Mice in the voluntary exercise group were housed in a cage with a running wheel, while mice in the MG-treated groups received drinking water containing 1% MG. Four weeks of voluntary exercise induced several molecular adaptations in the plantaris muscle, including increased expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), mitochondria complex proteins, toll-like receptor 4 (TLR4), 72-kDa heat shock protein (HSP72), hexokinase II, and glyoxalase 1; this also enhanced insulin-stimulated Akt Ser473 phosphorylation and citrate synthase activity. However, these adaptations were suppressed with MG treatment. In the soleus muscle, the exercise-induced increases in the expression of TLR4, HSP72, and advanced glycation end products receptor 1 were inhibited with MG treatment. These findings suggest that MG is a factor that inhibits endurance exercise-induced molecular responses including mitochondrial adaptations, insulin signaling activation, and the upregulation of several proteins related to mitochondrial biogenesis, glucose handling, and glycation in primarily fast-twitch skeletal muscle

    Glycative stress and skeletal muscle dysfunctions: as an inducer of "Exercise-Resistance."

    Get PDF
    Skeletal muscle, the largest tissue in the body, is often overlooked for its role as a locomotor organ, however over the past few decades it has been revealed that it also has an important role as a metabolic organ. In recent years, its role as an endocrine organ that controls the homeostatic functions of organs throughout the body mediated by myokine secretion has come under close scrutiny. Skeletal muscle is indispensable for our daily life activities, and in order to maintain its function, it is necessary to understand the factors that deteriorate muscle function and establish a countermeasure. Glycative stress has recently received attention as a factor that impairs skeletal muscle function. Accumulation of advanced glycation end products (AGEs) in skeletal muscle impairs contractile function and myogenic potential. Furthermore, AGEs in the blood elicit inflammatory signals through binding to RAGE (Receptor for AGEs) expressed on muscle cells, resulting in muscle proteolysis. Habitual exercise is important to mitigate the negative effects of such glycative stress on skeletal muscle. On the other hand, it is known that the beneficial effects of exercise vary among individuals. The state in which the effects of exercise are difficult to obtain is called "exercise-resistance, " and we hypothesize that glycative stress may be one of the causes of exercise-resistance. In this paper, we will discuss the possibility of glycative stress as an inducer of exercise resistance and summarize its impacts on skeletal muscle
    corecore