133 research outputs found
The effect of hip flexion angle on muscle elongation of the hip adductor muscles during stretching
In order to perform effective static stretching of the hip adductor muscles, it is necessary to clarify the position where the muscles are most stretched. However, the effective flexion angle in stretching for each adductor muscle remains unclear. The goal of this study was to investigate the effect of hip flexion angle on muscle elongation of hip adductor muscles during stretching. Sixteen healthy men were recruited for this study. Shear elastic modulus, an index of muscle elongation, of the adductor longus (AL), and both the anterior and posterior adductor magnus (anterior AM) were measured using ultrasonic shear wave elastography at rest (supine position) and at 5 stretching positions (maximal hip abduction at 90°, 60°, 30°, 0°, and -15° hip flexion). For the AL, the shear elastic modulus at rest was significantly lower than that in all stretching positions. However, there was no significant difference among stretching positions. For the anterior AM, there was no significant difference between stretching positions and at rest. For the posterior AM, the shear elastic modulus in 90°, 60°, and 30° hip flexion were significantly higher than that at rest. The shear elastic modulus in 90° hip flexion was significantly higher than that in 60° and 30° hip flexion. Our results suggest that the AL is elongated to the same extent by maximal hip abduction regardless of hip flexion angle, the anterior AM is not elongated regardless of the hip flexion angle; the posterior AM is elongated at all angles except at 0° and -15° hip flexion and is most extended at 90° hip flexion
Software Defined Media: Virtualization of Audio-Visual Services
Internet-native audio-visual services are witnessing rapid development. Among
these services, object-based audio-visual services are gaining importance. In
2014, we established the Software Defined Media (SDM) consortium to target new
research areas and markets involving object-based digital media and
Internet-by-design audio-visual environments. In this paper, we introduce the
SDM architecture that virtualizes networked audio-visual services along with
the development of smart buildings and smart cities using Internet of Things
(IoT) devices and smart building facilities. Moreover, we design the SDM
architecture as a layered architecture to promote the development of innovative
applications on the basis of rapid advancements in software-defined networking
(SDN). Then, we implement a prototype system based on the architecture, present
the system at an exhibition, and provide it as an SDM API to application
developers at hackathons. Various types of applications are developed using the
API at these events. An evaluation of SDM API access shows that the prototype
SDM platform effectively provides 3D audio reproducibility and interactiveness
for SDM applications.Comment: IEEE International Conference on Communications (ICC2017), Paris,
France, 21-25 May 201
Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network.
Recent studies of saccharides' peculiar anti-freezing and anti-dehydration properties point to a close association with their strong hydration capability and destructuring effect on the hydrogen bond (HB) network of bulk water. The underlying mechanisms are, however, not well understood. In this respect, examination of the complex dielectric constants of saccharide aqueous solutions, especially over a broadband frequency region, should provide interesting insights into these properties, since the dielectric responses reflect corresponding dynamics over the time scales measured. In order to do this, the complex dielectric constants of glucose solutions between 0.5 GHz and 12 THz (from the microwave to the far-infrared region) were measured. We then performed analysis procedures on this broadband spectrum by decomposing it into four Debye and two Lorentz functions, with particular attention being paid to the β relaxation (glucose tumbling), δ relaxation (rotational polarization of the hydrated water), slow relaxation (reorientation of the HB network water), fast relaxation (rotation of the non-HB water), and intermolecular stretching vibration (hindered translation of water). On the basis of this analysis, we revealed that the hydrated water surrounding the glucose molecules exhibits a mono-modal relaxational dispersion with 2-3 times slower relaxation times than unperturbed bulk water and with a hydration number of around 20. Furthermore, other species of water with distorted tetrahedral HB water structures, as well as increases in the relative proportion of non-HB water molecules which have a faster relaxation time and are not a part of the surrounding bulk water HB network, was found in the vicinity of the glucose molecules. These clearly point to the HB destructuring effect of saccharide solutes in aqueous solution. The results, as a whole, provide a detailed picture of glucose-water and water-water interactions in the vicinity of the glucose molecules at various time scales from sub-picosecond to hundreds of picoseconds
High-intensity interval training using electrical stimulation ameliorates muscle fatigue in chronic kidney disease-related cachexia by restoring mitochondrial respiratory dysfunction
BackgroundExercise, especially high-intensity interval training (HIIT), can increase mitochondrial respiratory capacity and enhance muscular endurance, but its systemic burden makes it difficult to safely and continuously prescribe for patients with chronic kidney disease (CKD)-related cachexia who are in poor general condition. In this study, we examined whether HIIT using electrical stimulation (ES), which does not require whole-body exercise, improves muscle endurance in the skeletal muscle of 5/6 nephrectomized rats, a widely used animal model for CKD-related cachexia.MethodsMale Wistar rats (10 weeks old) were randomly assigned to a group of sham-operated (Sham) rats and a group of 5/6 nephrectomy (Nx) rats. HIIT was performed on plantar flexor muscles in vivo with supramaximal ES every other day for 4 weeks to assess muscle endurance, myosin heavy-chain isoforms, and mitochondrial respiratory function in Nx rats. A single session was also performed to identify upstream signaling pathways altered by HIIT using ES.ResultsIn the non-trained plantar flexor muscles from Nx rats, the muscle endurance was significantly lower than that in plantar flexor muscles from Sham rats. The proportion of myosin heavy chain IIa/x, mitochondrial content, mitochondrial respiratory capacity, and formation of mitochondrial respiratory supercomplexes in the plantaris muscle were also significantly decreased in the non-trained plantar flexor muscles from Nx rats than compared to those in plantar flexor muscles from Sham rats. Treatment with HIIT using ES for Nx rats significantly improved these molecular and functional changes to the same degrees as those in Sham rats. Furthermore, a single session of HIIT with ES significantly increased the phosphorylation levels of AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK), pathways that are essential for mitochondrial activation signaling by exercise, in the plantar muscles of both Nx and Sham rats.ConclusionThe findings suggest that HIIT using ES ameliorates muscle fatigue in Nx rats via restoration of mitochondrial respiratory dysfunction with activation of AMPK and p38 MAPK signaling. Our ES-based HIIT protocol can be performed without placing a burden on the whole body and be a promising intervention that is implemented even in conditions of reduced general performance status such as CKD-related cachexia
Establishment and characterization of a novel treatment‐related neuroendocrine prostate cancer cell line KUCaP13
The prevalence of neuroendocrine prostate cancer (NEPC) arising from adenocarcinoma (AC) upon potent androgen receptor (AR) pathway inhibition is increasing. Deeper understanding of NEPC biology and development of novel therapeutic agents are needed. However, research is hindered by the paucity of research models, especially cell lines developed from NEPC patients. We established a novel NEPC cell line, KUCaP13, from tissue of a patient initially diagnosed with AC which later recurred as NEPC. The cell line has been maintained permanently in vitro under regular cell culture conditions and is amenable to gene engineering with lentivirus. KUCaP13 cells lack the expression of AR and overexpress NEPC-associated genes, including SOX2, EZH2, AURKA, PEG10, POU3F2, ENO2, and FOXA2. Importantly, the cell line maintains the homozygous deletion of CHD1, which was confirmed in the primary AC of the index patient. Loss of heterozygosity of TP53 and PTEN, and an allelic loss of RB1 with a transcriptomic signature compatible with Rb pathway aberration were revealed. Knockdown of PEG10 using shRNA significantly suppressed growth in vivo. Introduction of luciferase allowed serial monitoring of cells implanted orthotopically or in the renal subcapsule. Although H3K27me was reduced by EZH2 inhibition, reversion to AC was not observed. KUCaP13 is the first patient-derived, treatment-related NEPC cell line with triple loss of tumor suppressors critical for NEPC development through lineage plasticity. It could be valuable in research to deepen the understanding of NEPC
Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1
成人T細胞白血病リンパ腫の多段階発がん分子メカニズムを解明 --難治性疾患の新規治療標的候補を複数同定--. 京都大学プレスリリース. 2021-09-07.Premalignant clonal expansion of human T-cell leukemia virus type-1 (HTLV-1)–infected cells occurs before viral carcinogenesis. Here we characterize premalignant cells and the multicellular ecosystem in HTLV-1 infection with and without adult T-cell leukemia/lymphoma (ATL) by genome sequencing and single-cell simultaneous transcriptome and T/B-cell receptor sequencing with surface protein analysis. We distinguish malignant phenotypes caused by HTLV-1 infection and leukemogenesis and dissect clonal evolution of malignant cells with different clinical behavior. Within HTLV-1–infected cells, a regulatory T-cell phenotype associates with premalignant clonal expansion. We also delineate differences between virus- and tumor-related changes in the nonmalignant hematopoietic pool, including tumor-specific myeloid propagation. In a newly generated conditional knockout mouse model recapitulating T-cell–restricted CD274 (encoding PD-L1) gene lesions found in ATL, we demonstrate that PD-L1 overexpressed by T cells is transferred to surrounding cells, leading to their PD-L1 upregulation. Our findings provide insights into clonal evolution and immune landscape of multistep virus carcinogenesis
Plaque REgression with Cholesterol absorption Inhibitor or Synthesis inhibitor Evaluated by IntraVascular UltraSound (PRECISE-IVUS Trial): Study protocol for a randomized controlled trial
AbstractBackgroundAlthough the positive association between achieved low-density lipoprotein cholesterol (LDL-C) level and the risk of coronary artery disease (CAD) has been confirmed by randomized studies with statins, many patients remain at high residual risk of events suggesting the necessity of novel pharmacologic strategies. The combination of ezetimibe/statin produces greater reductions in LDL-C compared to statin monotherapy.PurposeThe Plaque REgression with Cholesterol absorption Inhibitor or Synthesis inhibitor Evaluated by IntraVascular UltraSound (PRECISE-IVUS) trial was aimed at evaluating the effects of ezetimibe addition to atorvastatin, compared with atorvastatin monotherapy, on coronary plaque regression and change in lipid profile in patients with CAD.MethodsThe study is a prospective, randomized, controlled, multicenter study. The eligible patients undergoing IVUS-guided percutaneous coronary intervention will be randomly assigned to receive either atorvastatin alone or atorvastatin plus ezetimibe (10mg) daily using a web-based randomization software. The dosage of atorvastatin will be increased by titration within the usual dose range with a treatment goal of lowering LDL-C below 70mg/dL based on consecutive measures of LDL-C at follow-up visits. IVUS will be performed at baseline and 9–12 months follow-up time point at participating cardiovascular centers. The primary endpoint will be the nominal change in percent coronary atheroma volume measured by volumetric IVUS analysis.ConclusionPRECISE-IVUS will assess whether the efficacy of combination of ezetimibe/atorvastatin is noninferior to atorvastatin monotherapy for coronary plaque reduction, and will translate into increased clinical benefit of dual lipid-lowering strategy in a Japanese population
Management of post-hyperventilation apnea during dental treatment under monitored anesthesia care with propofol
Although hyperventilation syndrome generally carries a good prognosis, it is associated with the risk of developing severe symptoms, such as post-hyperventilation apnea with hypoxemia and loss of consciousness. We experienced a patient who suffered from post hyperventilation apnea. A 17-year-old female who suffered from hyperventilation syndrome for several years developed post-hyperventilation apnea after treatment using the paper bag rebreathing method and sedative administration during a dental procedure. We subsequently successfully provided her with monitored anesthesia care with propofol. Monitored anesthesia care with propofol may be effective for the general management of patients who have severe hyperventilation attacks and post-hyperventilation apnea. This case demonstrates that appropriate emergency treatment should be available for patients with hyperventilation attacks who are at risk of developing post-hyperventilation apnea associated with hypoxemia and loss of consciousness
- …