3,677 research outputs found
Tunable Vibrational Band Gaps in One-Dimensional Diatomic Granular Crystals with Three-Particle Unit Cells
We investigate the tunable vibration filtering properties of one-dimensional
diatomic granular crystals composed of arrays of stainless steel spheres and
cylinders interacting via Hertzian contact. The arrays consist of periodically
repeated three-particle unit cells (steel-cylinder-sphere) in which the length
of the cylinder is varied systematically. We apply static compression to
linearize the dynamic response of the crystals and characterize their linear
frequency spectrum. We find good agreement between theoretical dispersion
relation analysis (for infinite systems), state-space analysis (for finite
systems), and experiments. We report the observation of up to three distinct
pass bands and two finite band gaps and show their tunability for variations in
cylinder length and static compression
Luttinger Liquid Instability in the One Dimensional t-J Model
We study the t-J model in one dimension by numerically projecting the true
ground state from a Luttinger liquid trial wave function. We find the model
exhibits Luttinger liquid behavior for most of the phase diagram in which
interaction strength and density are varied. However at small densities and
high interaction strengths a new phase with a gap to spin excitations and
enhanced superconducting correlations is found. We show this phase is a
Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from
[email protected]
The Phase Diagram of Correlated Electrons in a Lattice of Berry Molecules
A model for correlated electrons in a lattice with local additional spin--1
degrees of freedom inducing constrained hopping, is studied both in the low
density limit and at quarter filling. We show that in both 1D and 2D two
particles form a bound state even in presence of a repulsive U<U_c. A picture
of a dilute Bose gas, leading to off-diagonal long range order (LRO) in 2D
(quasi-LRO in 1D), is supported by quantitative calculations in 1D which allow
for a determination of the phase diagram.Comment: 7 pages + 2 ps figures, published versio
Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters
Zn nanoclusters (NCs) are deposited by Low-energy cluster beam deposition
technique. The mechanism of oxidation is studied by analysing their
compositional and morphological evolution over a long span of time (three
years) due to exposure to ambient atmosphere. It is concluded that the
mechanism proceeds in two steps. In the first step, the shell of ZnO forms over
Zn NCs rapidly up to certain limiting thickness: with in few days -- depending
upon the size -- Zn NCs are converted to Zn-ZnO (core-shell), Zn-void-ZnO, or
hollow ZnO type NCs. Bigger than ~15 nm become Zn-ZnO (core-shell) type: among
them, NCs above ~25 nm could able to retain their initial geometrical shapes
(namely triangular, hexagonal, rectangular and rhombohedral), but ~25 to 15 nm
size NCs become irregular or distorted geometrical shapes. NCs between ~15 to 5
nm become Zn-void-ZnO type, and smaller than ~5 nm become ZnO hollow sphere
type i.e. ZnO hollow NCs. In the second step, all Zn-void-ZnO and Zn-ZnO
(core-shell) structures are converted to hollow ZnO NCs in a slow and gradual
process, and the mechanism of conversion proceeds through expansion in size by
incorporating ZnO monomers inside the shell. The observed oxidation behaviour
of NCs is compared with theory of Cabrera - Mott on low-temperature oxidation
of metal.Comment: 9 pages, 8 figure
Numerical renormalization group study of the 1D t-J model
The one-dimensional (1D) model is investigated using the density matrix
renormalization group (DMRG) method. We report for the first time a
generalization of the DMRG method to the case of arbitrary band filling and
prove a theorem with respect to the reduced density matrix that accelerates the
numerical computation. Lastly, using the extended DMRG method, we present the
ground state electron momentum distribution, spin and charge correlation
functions. The anomaly of the momentum distribution function first
discussed by Ogata and Shiba is shown to disappear as increases. We also
argue that there exists a density-independent beyond which the system
becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio
Is there spin-charge separation in the 2D Hubbard and t-J models at low electronic densities?
The spin and density correlation functions of the two-dimensional Hubbard
model at low electronic density are calculated in the ground state by
using the power method, and at finite temperatures by using the quantum Monte
Carlo technique. Both approaches produce similar results, which are in close
agreement with numerical and high temperature expansion results for the
two-dimensional model. Using perturbative approximations, we show
that the examination of the density correlation function alone is not enough to
support recent claims in the literature that suggested spin and charge
separation in the low electronic density regime of the model.Comment: 11 pages, tex, 3 figures upon request, NTHU - preprin
NMR relaxation time around a vortex in stripe superconductors
Site-dependent NMR relaxation time is calculated in the vortex
state using the Bogoliubov-de Gennes theory, taking account of possible
"field-induced stripe'' states in which the magnetism arises locally around a
vortex core in d-wave superconductivity. The recently observed huge enhancement
below at a core site in TlBaCuO is
explained. The field-induced stripe picture explains consistently other
relevant STM and neutron experiments.Comment: 4 pages, 4 figure
Effect of the Three-Site Hopping Term on the t-J Model
We have used exact diagonalization and quantum Monte Carlo methods to study
the one-dimensional {t-J} model including the three-site hopping term derived
from the strong coupling limit of the Hubbard model. The three-site term may be
important to superconducting correlations since it allows direct hopping of
local singlet electron pairs. The phase diagram is determined for several
values of the strength of the three-site term and compared with that of the
{t-J} and Hubbard models. Phase separation, which exists in the t-J model is
suppressed. In the low electron density region the formation of local singlet
electron pairs is enhanced, leading to stronger superconducting correlations
even for values . A large spin gap region extends from low electron
densities up to high densities. In the low hole density region the
superconducting correlations are suppressed at in spite of enhanced
pair formation. This is because the three-site term, while enhancing the
formation of electron pairs, leads to a repulsion between holes.Comment: 9 pages including 9 figures and 1 Table. Self-unpacking postscript.
Unpacking instructions are at the beginning of the file. Submitted to
Physical Review
Spin-fluctuations in the quarter-filled Hubbard ring : significances to LiVO
Using the quantum Monte Carlo method, we investigate the spin dynamics of
itinerant electrons in the one-dimensional Hubbard system. Based on the model
calculation, we have studied the spin-fluctuations in the quarter-filled
metallic Hubbard ring, which is aimed at the vanadium ring or chain defined
along corner-sharing tetrahedra of LiVO, and found the dramatic changes
of magnetic responses and spin-fluctuation characteristics with the
temperature. Such results can explain the central findings in the recent
neutron scattering experiment for LiVO.Comment: 5 pages, 3 figure
- …