5,070 research outputs found

    Evolution of iron core white dwarfs

    Get PDF
    Recent measurements made by Hipparcos (Provencal et al. 1998) present observational evidence supporting the existence of some white dwarf (WD) stars with iron - rich, core composition. In this connection, the present paper is aimed at exploring the structure and evolution of iron - core WDs by means of a detailed and updated evolutionary code. In particular, we examine the evolution of the central conditions, neutrino luminosity, surface gravity, crystallization, internal luminosity profiles and ages. We find that the evolution of iron - rich WDs is markedly different from that of their carbon - oxygen counterparts. In particular, cooling is strongly accelerated as compared with the standard case. Thus, if iron WDs were very numerous, some of them would have had time enough to evolve at lower luminosities than that corresponding to the fall - off in the observed WD luminosity function.Comment: 8 pages, 21 figures. Accepted for publication in MNRA

    Invariant manifolds and orbit control in the solar sail three-body problem

    Get PDF
    In this paper we consider issues regarding the control and orbit transfer of solar sails in the circular restricted Earth-Sun system. Fixed points for solar sails in this system have the linear dynamical properties of saddles crossed with centers; thus the fixed points are dynamically unstable and control is required. A natural mechanism of control presents itself: variations in the sail's orientation. We describe an optimal controller to control the sail onto fixed points and periodic orbits about fixed points. We find this controller to be very robust, and define sets of initial data using spherical coordinates to get a sense of the domain of controllability; we also perform a series of tests for control onto periodic orbits. We then present some mission strategies involving transfer form the Earth to fixed points and onto periodic orbits, and controlled heteroclinic transfers between fixed points on opposite sides of the Earth. Finally we present some novel methods to finding periodic orbits in circumstances where traditional methods break down, based on considerations of the Center Manifold theorem

    Vere-Jones' Self-Similar Branching Model

    Full text link
    Motivated by its potential application to earthquake statistics, we study the exactly self-similar branching process introduced recently by Vere-Jones, which extends the ETAS class of conditional branching point-processes of triggered seismicity. One of the main ingredient of Vere-Jones' model is that the power law distribution of magnitudes m' of daughters of first-generation of a mother of magnitude m has two branches m'm with exponent beta+d, where beta and d are two positive parameters. We predict that the distribution of magnitudes of events triggered by a mother of magnitude mm over all generations has also two branches m'm with exponent beta+h, with h= d \sqrt{1-s}, where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. The empirical absence of such two-branched distributions implies, if this model is seriously considered, that the earth is close to criticality (s close to 1) so that beta - h \approx \beta + h \approx \beta. We also find that, for a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources and is blind to the exponents beta, d of the distribution of triggered events.Comment: 13 page + 3 eps figure

    New possibility of the ground state of quarter-filled one-dimensional strongly correlated electronic system interacting with localized spins

    Full text link
    We study numerically the ground state properties of the one-dimensional quarter-filled strongly correlated electronic system interacting antiferromagnetically with localized S=1/2S=1/2 spins. It is shown that the charge-ordered state is significantly stabilized by the introduction of relatively small coupling with the localized spins. When the coupling becomes large the spin and charge degrees of freedom behave quite independently and the ferromagnetism is realized. Moreover, the coexistence of ferromagnetism with charge order is seen under strong electronic interaction. Our results suggest that such charge order can be easily controlled by the magnetic field, which possibly give rise to the giant negative magnetoresistance, and its relation to phthalocyanine compounds is discussed.Comment: 5pages, 4figure

    Experimental demonstration of four-party quantum secret sharing

    Get PDF
    Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Similar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-party quantum secret sharing via the resource of four-photon entanglement

    Asynchronous Graph Pattern Matching on Multiprocessor Systems

    Full text link
    Pattern matching on large graphs is the foundation for a variety of application domains. Strict latency requirements and continuously increasing graph sizes demand the usage of highly parallel in-memory graph processing engines that need to consider non-uniform memory access (NUMA) and concurrency issues to scale up on modern multiprocessor systems. To tackle these aspects, graph partitioning becomes increasingly important. Hence, we present a technique to process graph pattern matching on NUMA systems in this paper. As a scalable pattern matching processing infrastructure, we leverage a data-oriented architecture that preserves data locality and minimizes concurrency-related bottlenecks on NUMA systems. We show in detail, how graph pattern matching can be asynchronously processed on a multiprocessor system.Comment: 14 Pages, Extended version for ADBIS 201

    Tunable Vibrational Band Gaps in One-Dimensional Diatomic Granular Crystals with Three-Particle Unit Cells

    Get PDF
    We investigate the tunable vibration filtering properties of one-dimensional diatomic granular crystals composed of arrays of stainless steel spheres and cylinders interacting via Hertzian contact. The arrays consist of periodically repeated three-particle unit cells (steel-cylinder-sphere) in which the length of the cylinder is varied systematically. We apply static compression to linearize the dynamic response of the crystals and characterize their linear frequency spectrum. We find good agreement between theoretical dispersion relation analysis (for infinite systems), state-space analysis (for finite systems), and experiments. We report the observation of up to three distinct pass bands and two finite band gaps and show their tunability for variations in cylinder length and static compression

    Deformation effect on total reaction cross sections for neutron-rich Ne-isotopes

    Full text link
    Isotope-dependence of measured reaction cross sections in scattering of 2832^{28-32}Ne isotopes from 12^{12}C target at 240 MeV/nucleon is analyzed by the double-folding model with the Melbourne gg-matrix. The density of projectile is calculated by the mean-field model with the deformed Wood-Saxon potential. The deformation is evaluated by the antisymmetrized molecular dynamics. The deformation of projectile enhances calculated reaction cross sections to the measured values.Comment: 6 pages, 4 figures, 2 table

    Hierarchy of Temporal Responses of Multivariate Self-Excited Epidemic Processes

    Full text link
    We present the first exact analysis of some of the temporal properties of multivariate self-excited Hawkes conditional Poisson processes, which constitute powerful representations of a large variety of systems with bursty events, for which past activity triggers future activity. The term "multivariate" refers to the property that events come in different types, with possibly different intra- and inter-triggering abilities. We develop the general formalism of the multivariate generating moment function for the cumulative number of first-generation and of all generation events triggered by a given mother event (the "shock") as a function of the current time tt. This corresponds to studying the response function of the process. A variety of different systems have been analyzed. In particular, for systems in which triggering between events of different types proceeds through a one-dimension directed or symmetric chain of influence in type space, we report a novel hierarchy of intermediate asymptotic power law decays 1/t1(m+1)θ\sim 1/t^{1-(m+1)\theta} of the rate of triggered events as a function of the distance mm of the events to the initial shock in the type space, where 0<θ<10 < \theta <1 for the relevant long-memory processes characterizing many natural and social systems. The richness of the generated time dynamics comes from the cascades of intermediate events of possibly different kinds, unfolding via a kind of inter-breeding genealogy.Comment: 40 pages, 8 figure

    Possibility of f-wave spin-triplet superconductivity in the CoO superconductor: a case study on a 2D triangular lattice in the repulsive Hubbard model

    Full text link
    Stimulated by the recent finding of Na0.35_{0.35}CoO2_2.1.3H2_2O superconductor, we investigate superconducting instabilities on a 2D triangular lattice in the repulsive Hubbard model. Using the third-order perturbation expansion with respect to the on-site repulsion UU, we evaluate the linearized Dyson-Gor'kov equation. We find that an ff-wave spin-triplet pairing is the most stable in a wide range of the next nearest neighbor hopping integral tt' and an electron number density nn. The introduction of tt' is crucial to adjust the van Hove singularities to the neighborhood of the Fermi surface crossing around K point. In this case, the bare spin susceptibility shows the broad peak around Γ\Gamma point. These conditions stabilize the ff-wave pairing. Although the ff-wave pairing is also given by the fluctuation-exchange approximation, the transition temperature is too low to be observed. This is because the depairing effect by the spin fluctuation is over-estimated. Thus, the third-order vertex corrections are important for the spin-triplet superconductivity, like the case in Sr2_2RuO4_4.Comment: 4 pages, 7 figure
    corecore