76 research outputs found

    Phase-dependent modulation of the vestibular–cerebellar network via combined alternating current stimulation influences human locomotion and posture

    Get PDF
    BackgroundHuman locomotion induces rhythmic movements of the trunk and head. Vestibular signaling is relayed to multiple regions in the brainstem and cerebellum, and plays an essential role in maintaining head stability. However, how the vestibular–cerebellar network contributes to the rhythmic locomotor pattern in humans is unclear. Transcranial alternating current stimulation (tACS) has been used to investigate the effects of the task-related network between stimulation regions in a phase-dependent manner. Here, we investigated the relationship between the vestibular system and the cerebellum during walking imagery using combined tACS over the left cerebellum and alternating current galvanic vestibular stimulation (AC-GVS).MethodsIn Experiment 1, we tested the effects of AC-GVS alone at around individual gait stride frequencies. In Experiment 2, we then determined the phase-specificity of combined stimulation at the gait frequency. Combined stimulation was applied at in-phase (0° phase lag) or anti-phase (180° phase lag) between the left vestibular and left cerebellar stimulation, and the sham stimulation. We evaluated the AC-GVS-induced periodic postural response during walking imagery or no-imagery using the peak oscillatory power on the angular velocity signals of the head in both experiments. In Experiment 2, we also examined the phase-locking value (PLV) between the periodic postural responses and the left AC-GVS signals to estimate entrainment of the postural response by AC-GVS.ResultsAC-GVS alone induced the periodic postural response in the yaw and roll axes, but no interactions with imagery walking were observed in Experiment 1 (p > 0.05). By contrast, combined in-phase stimulation increased yaw motion (0.345 ± 0.23) compared with sham (−0.044 ± 0.19) and anti-phase stimulation (−0.066 ± 0.18) during imaginary walking (in-phase vs. other conditions, imagery: p < 0.05; no-imagery: p ≥ 0.125). Furthermore, there was a positive correlation between the yaw peak power of actual locomotion and in-phase stimulation in the imagery session (imagery: p = 0.041; no-imagery: p = 0.177). Meanwhile, we found no imagery-dependent effects in roll peak power or PLV, although in-phase stimulation enhanced roll motion and PLV in Experiment 2.ConclusionThese findings suggest that combined stimulation can influence vestibular–cerebellar network activity, and modulate postural control and locomotion systems in a temporally sensitive manner. This novel combined tACS/AC-GVS stimulation approach may advance development of therapeutic applications

    Prediction Models for BMI and NAFLD

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity. Disulfide bond‐forming oxidoreductase A‐like protein (DsbA‐L) is known to be a key molecule in protection against obesity and obesity‐induced inflammation. In the present study, we used a modeling and simulation approach in an attempt to develop body mass index (BMI) and BMI‐based NAFLD prediction models incorporating the DsbA‐L polymorphism to predict the BMI and NAFLD in 341 elderly subjects. A nonlinear mixed‐effect model best represented the sigmoidal relationship between the BMI and the logit function of the probability of NAFLD prevalence. The final models for BMI and NAFLD showed that DsbA‐L rs1917760 polymorphism, age, and gender were associated with the BMI, whereas gender, patatin‐like phospholipase 3 rs738409 polymorphism, HbA1c, and high‐density and low‐density lipoprotein cholesterol levels were associated with the risk of NAFLD. This information may aid in the genetic‐based prevention of obesity and NAFLD in the general elderly population

    Grand Total EEG Score Can Differentiate Parkinson's Disease From Parkinson-Related Disorders

    Get PDF
    Background: Semi-quantitative electroencephalogram (EEG) analysis is easy to perform and has been used to differentiate dementias, as well as idiopathic and vascular Parkinson's disease.Purpose: To study whether a semi-quantitative EEG analysis can aid in distinguishing idiopathic Parkinson's disease (IPD) from atypical parkinsonian disorders (APDs), and furthermore, whether it can help to distinguish between APDs.Materials and Methods: A comprehensive retrospective review of charts was performed to include patients with parkinsonian disorders who had at least one EEG recording available. A modified grand total EEG (GTE) score evaluating the posterior background activity, and diffuse and focal slow wave activities was used in further analyses.Results: We analyzed data from 76 patients with a final diagnosis of either IPD, probable corticobasal degeneration (CBD), multiple system atrophy (MSA), or progressive supra-nuclear palsy (PSP). IPD patients had the lowest mean GTE score, followed those with CBD or MSA, while PSP patients scored the highest. However, none of these differences were statistically significant. A GTE score of ≤9 distinguished IPD patients from those with APD (p < 0.01) with a sensitivity of 100% and a specificity of 33.3%.Conclusion: The modified GTE score can distinguish patients with IPD from those with CBD, PSP or MSA at a cut-off score of 9 with excellent sensitivity but poor specificity. However, this score is not able to distinguish a particular form of APD from other forms of the disorder

    Mamld1 Knockdown Reduces Testosterone Production and Cyp17a1 Expression in Mouse Leydig Tumor Cells

    Get PDF
    MAMLD1 is known to be a causative gene for hypospadias. Although previous studies have indicated that MAMLD1 mutations result in hypospadias primarily because of compromised testosterone production around the critical period for fetal sex development, the underlying mechanism(s) remains to be clarified. Furthermore, although functional studies have indicated a transactivation function of MAMLD1 for the non-canonical Notch target Hes3, its relevance to testosterone production remains unknown. To examine these matters, we performed Mamld1 knockdown experiments.Mamld1 knockdown was performed with two siRNAs, using mouse Leydig tumor cells (MLTCs). Mamld1 knockdown did not influence the concentrations of pregnenolone and progesterone but significantly reduced those of 17-OH pregnenolone, 17-OH progesterone, dehydroepiandrosterone, androstenedione, and testosterone in the culture media. Furthermore, Mamld1 knockdown significantly decreased Cyp17a1 expression, but did not affect expressions of other genes involved in testosterone biosynthesis as well as in insulin-like 3 production. Hes3 expression was not significantly altered. In addition, while 47 genes were significantly up-regulated (fold change >2.0×) and 38 genes were significantly down-regulated (fold change <0.5×), none of them was known to be involved in testosterone production. Cell proliferation analysis revealed no evidence for compromised proliferation of siRNA-transfected MLTCs.The results, in conjunction with the previous data, imply that Mamld1 enhances Cyp17a1 expression primarily in Leydig cells and permit to produce a sufficient amount of testosterone for male sex development, independently of the Hes3-related non-canonical Notch signaling

    PACAP centrally mediates emotional stress-induced corticosterone responses in mice

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide widely distributed in the nervous system. Recently, PACAP was shown to be involved in restraint stress-induced corticosterone release and concomitant expression of the genes involved in hypothalamic–pituitary–adrenal (HPA) axis activation. Therefore, in this study, we have addressed the types of stressors and the levels of the HPA axis in which PACAP signaling is involved using mice lacking PACAP (PACAP−/−). Among four different types of stressors, open-field exposure, cold exposure, ether inhalation, and restraint, the corticosterone response to open-field exposure and restraint, which are categorized as emotional stressors, but not the other two, was markedly attenuated in PACAP−/− mice. Peripheral administration of corticotropin releasing factor (CRF) or adrenocorticotropic hormone induced corticosterone increase similarly in PACAP and wild-type mice. In addition, the restraint stress-induced c-Fos expression was significantly decreased in the paraventricular nucleus (PVN) and medial amygdala (MeA), but not the medial prefrontal cortex, in PACAP−/− mice. In the PVN of PACAP−/− mice, the stress-induced c-Fos expression was blunted in the CRF neurons. These results suggest that PACAP is critically involved in activation of the MeA and PVN CRF neurons to centrally regulate the HPA axis response to emotional stressors

    Hanging in the Blast Furnace Caused by Flooding.

    No full text

    Phase and Frequency-Dependent Effects of Transcranial Alternating Current Stimulation on Motor Cortical Excitability

    No full text
    <div><p>Transcranial alternating current stimulation (tACS) can entrain ongoing brain oscillations and modulate the motor system in a frequency-dependent manner. Recent animal studies have demonstrated that the phase of a sinusoidal current also has an important role in modulation of neuronal activity. However, the phase effects of tACS on the human motor system are largely unknown. Here, we systematically investigated the effects of tACS phase and frequency on the primary motor cortex (M1) by using motor evoked potentials (MEPs) with transcranial magnetic stimulation (TMS). First, we compared the phase effects (90°, 180°, 270° or 360°) of 10 and 20 Hz tACS on MEPs. The 20 Hz tACS significantly increased M1 excitability compared with the 10 Hz tACS at 90° phase only. Second, we studied the 90° phase effect on MEPs at different tACS frequencies (5, 10, 20 or 40 Hz). The 20 vs. 10 Hz difference was again observed, but the 90° phase in 5 and 40 Hz tACS did not influence M1 excitability. Third, the 90° phase effects of 10 and 20 Hz tACS were compared with sham stimulation. The 90° phase of 20 Hz tACS enhanced MEP amplitudes compared with sham stimulation, but there was no significant effect of 10 Hz tACS. Taken together, we assume that the differential 90° phase effects on 20 Hz and 10 Hz tACS can be attributed to the neural synchronization modulated by tACS. Our results further underline that phase and frequency are the important factors in the effects of tACS on M1 excitability.</p></div
    corecore