8 research outputs found

    A tool for exploring space-time patterns : an animation user research

    Get PDF
    BACKGROUND: Ever since Dr. John Snow (1813–1854) used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping – all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation) in exploring geospatial structures encompassing disease, urban and census mapping. RESULTS: Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities) background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred exploratory tool in identifying, interpreting and providing explanations about observed geospatial phenomena. Also, exploring geospatial data structures using animation is best achieved using provocative interactive tools such as was seen with the inference-based animation. The visual methods employed using the three types of animation are all related and together these patterns confirm the exploratory cognitive structure and processes for visualization tools. CONCLUSION: The generic types of animation as defined in this paper play a crucial role in facilitating the visualization of geospatial data. These animations can be created and their contents defined based on the user's presentational and exploratory needs. For highly explorative tasks, maintaining a link between the data sets and the animation is crucial to enabling a rich and effective knowledge discovery environment

    Energy consumption in cloud computing environments

    Get PDF
    The conference aimed at supporting and stimulating active productive research set to strengthen the technical foundations of engineers and scientists in the continent, through developing strong technical foundations and skills, leading to new small to medium enterprises within the African sub-continent. It also seeked to encourage the emergence of functionally skilled technocrats within the continent.Datacentres are becoming indispensable infrastructure for supporting the services offered by cloud computing. Unfortunately, they consume a great deal of energy accounting for 3% of global electrical energy consumption. The effect of this is that, cloud providers experience high operating costs, which leading to increased Total Cost of Ownership (TCO) of datacentre infrastructure. Moreover, there is increased carbon dioxide emissions that affects the universe. This paper presents a survey on the various ways in which energy is consumed in datacentre infrastructure. The factors that influence energy consumption within a datacentre is presented as well.Strathmore University; Institute of Electrical and Electronics Engineers (IEEE

    MOVE: A Multi-Level Ontology-Based Visualization and Exploration Framework for Genomic Networks

    Get PDF
    Among the various research areas that comprise bioinformatics, systems biology is gaining increasing attention. An important goal of systems biology is the unraveling of dynamic interactions between components of living cells (e.g., proteins, genes). These interactions exist among others on genomic, transcriptomic, proteomic and metabolomic levels. The levels themselves are heavily interconnected, resulting in complex networks of different interacting biological entities. Currently, various bioinformatics tools exist which are able to perform a particular analysis on a particular type of network. Unfortunately, each tool has its own disadvantages hampering it to be used consistently for different types of networks or analytical methods. This paper describes the conceptual development of an open source extensible software framework that supports visualization and exploration of highly complex genomic networks, like metabolic or gene regulatory networks. The focus is on the conceptual foundations, starting from requirements, a description of the state of the art of network visualization systems, and an analysis of their shortcomings. We describe the implementation of some initial modules of the framework and apply them to a biological test case in bacterial regulation, which shows the relevance and feasibility of the proposed approach.
    corecore