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Abstract – Datacentres are becoming indispensable infrastructure for supporting the services offered by 

cloud computing. Unfortunately, they consume a great deal of energy accounting for 3% of global electrical 

energy consumption. The effect of this is that, cloud providers experience high operating costs, which 

leading to increased Total Cost of Ownership (TCO) of datacentre infrastructure. Moreover, there is 

increased carbon dioxide emissions that affects the universe. This paper presents a survey on the various 

ways in which energy is consumed in datacentre infrastructure. The factors that influence energy 

consumption within a datacentre is presented as well. 
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I. INTRODUCTION 

The excessive energy consumption 

datacentres has become a major concern to cloud 

computing practitioners. This is because they 

consume a great deal of energy accounting for 3% 

of global electrical energy consumption [1]. The 

effect of this is that, cloud providers experience 

high operating costs [2], which leading to 

increased Total Cost of Ownership (TCO) of 

datacentre infrastructure. The effect of high TCO 

is low Return on Investment (ROI). Moreover, 

there is increased carbon dioxide emissions that 

affects the universe. The reason for increased 

installation of datacentres is to enable cloud users 

to benefit from the many advantages of cloud 

computing such as cost-effectiveness, ease of 

management and on-demand scalability, as well 

as ensuring Quality of Service (QoS) and Service 

Level Agreement (SLA) [3]. According to [4], an 

average datacentre consumes as much energy as 

25, 000 households.  

Apart from low ROI, excessive energy 

consumpption has a negative impact on the 

environment, which is carbon dioxide (CO2) 

emmision. According to [5], the ICT industry is 

estimated to contribute about 2% of global CO2 

emission, which contributes greatly to 

greenhouse effect – this emission is equivalent to 

the aviation industry. Worldwide datacenter 

energy consumption rose steadily steadily from 

year 2000 to 2010. In 2010, data center accounted 

for about 1.5% of total energy consumed 

worldwide [6]. As shown in Figure 1, datacenter 

energy consumption will continue to rise.  

 

 Figure 1: Forecast: Energy consumption of global cloud 

computing [7] 

The high energy usage in the cloud is 

attributed to energy wastage and innefficincies 

related to the way electrical energy is delivered to 

the computing resources and the server at large 

and largely in the way these resources are used by 

applications workloads [3]. For example low 

server utilization and idle power westage are a 

major source of energy westage in a cloud 

computing environment. 

A. What is cloud Computing?  

Cloud computing is a model that provides 

computing resources on demand or on rental 

basis and so users can pay only for resources they 

use [3]. Therefore, customers can purchase a 

specific set of resources when they need it instead 

of renting a fixed amount of physical server. [7] 

defines cloud computing as “... a model for 

enabling ubiquitous, convenient, on-demand 
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network access to a shared pool of configurable 

computing resources (e.g., networks, servers, 

storage, applications, and services) that can be 

rapidly provisioned and released with minimal 

management effort or service provider 

interaction ”. By shared pool, resources are 

collected together and then dynamically allocated 

regardless of their physical location. On the other 

hand, network access allows the collected 

resources to be accessed via a network. In 

addition, rapid provisioning capability allows the 

service offering to scale so that the changing 

demands by cloud users are met. Cloud 

computing allows applications to be accessed via 

the internet using a browser, as well as hardware 

systems and systems software in the datacentres 

that manage user applications.  

B. Virtualization in Cloud Computing 

Virtualization is the main technology backing 

up cloud computing and it is based on physical 

resources abstraction in a way that several virtual 

resources are multiplexed on a physical one [8]. 

Virtualization provides high resource utilization 

as compared to traditional computing, flexibly, 

elasticity. This makes it possible to run multiple 

services or applications in the same PM including 

operating systems. A server is divided into 

number small servers known as Virtual Machines 

(VMs), which can run different applications 

independently and a VM can be moved from one 

PM to another (Figure 2) [8]. 

The hypervisor or Virtual Machine Manager 

(VMM) is software layer, which induces the 

partitioning capability and may run directly on 

the hardware or on a host operating system [8]. 

The VMM is responsible for managing physical 

resources. A host machine is the PM in which a 

VMM runs. Examples of VMMs are Xen, 

VMWare and KVM [8]. A VM is a representation 

of a real machine using a software, which 

provides virtual operating environment in which 

an operating system runs. A VM is referred to as 

a guest machine and it runs a guest operating 

system. 

 
Figure 2: Traditional physical server versus virtual server 

[8] 

 As illustrated in Figure 2, virtualization, 

unlike traditional computing, can be used to run 

different applications hence solving the problem 

computing resource underutilization. 
C. Cloud Computing Actors  

There are four main actors in a cloud 

environment [9]. 

Cloud provider: This is the owner of the cloud 

service. A cloud provider has a role of managing 

and controlling the cloud service. The role may 

differ depending on the service model – IaaS, 

PaaS and SaaS.  

Cloud user: Also known as, cloud consumer, this 

actor uses the services offered by a cloud 

provider.  

Cloud broker: The cloud broker sits in the middle 

between the consumer and the provider. Their 

role is to help the consumer to overcome the 

complexity of choosing a cloud service provider. 

This actor may assist the consumer to combine 

the features of multiple cloud providers.   

Cloud carrier: This actor ferries services of the 

cloud provider to cloud user.  

D. Cloud Computing Service Models  

The services provided by cloud computing 

can be categorized into three main layers - 

Software as a service (SaaS), Platform as a 

service (PaaS) and Infrastructure as a service 

(IaaS). IaaS is the lowest layer [10] and is by far 

the most promising model in providing cloud 

computing services [11]. In IaaS cloud, users 

provision VMs and independently run 

applications with mixed workloads without any 

control from the cloud provider. SaaS normally 

delivers online software services, IaaS delivers 

computing resources such as processor, memory, 

network and storage whereas PaaS delivers 

platform as a service where users can deploy 

custom software (). Each layer consumes service 

provided by a lower layer. 

 
Figure 3: Cloud computing service models [12] 
 

 



E. Cloud Computing Deployment Models 

Cloud deployment models are private, 

public, community and hybrid (Sareh, 2016). In a 

private cloud, the compute resources are owned 

by one entity, normally the client. If many 

businesses share a business model, they may set 

up a cloud, which is called community cloud. 

When cloud infrastructure is offered to a large 

number of users who may have differing needs, it 

is called public cloud. Hybrid cloud consists of 

two or more cloud deployment models (Figure 

4)Error! Reference source not found..  

  
Figure 4: The four cloud deployment models: private, 

public, community and hybrid [3] 

II. SOURCES OF ENERGY CONSUMPTION 

IN SERVERS AND DATACENTRES 

The CPU, disk storage, memory and network 

are the main consumers of energy in a server [6]. 

The CPU consumes the largest portion of energy 

supplied to a server in a datacentre followed by 

the memory (Figure 5).  

 

 
Figure 5: Server Power consumption by server component 

[13] 

However, due to improvements in the CPU 

efficiency, it no longer dominates energy 

consumption [5]. On the other hand, energy 

consumed by processor greatly depends on 

processor types. For example, new Intel 

processor have power saving mechanisms [13]. 

Energy consumed by a datacentre can be saved 

up to 50% by efficiently performing VM 

consolidation [5]. For example, efficient VM 

consolidation can ensure VMs are packaged in 

the least number of servers so that other servers 

are shut down thus saving more energy. This is 

because an idle server consume 70% of the power 

when it is fully utilized [5]. 

Apart from IT load (CPU, disk storage, 

memory and network), electrical energy is also 

consumed by cooling and during distribution. As 

the datacentre servers are used, they emit heat, 

which need to be eliminated to avoid additional 

energy wastage and hardware failure [14]. 

 
Figure 6: Energy consumption by datacentre components 

[15] 

As shown in Figure 6, 33% of datacentre 

energy goes to cooling, which is more than 60% 

of that used for IT load. The amount of heat 

generated is a function of three factors; - 

frequency and voltage of the integrated circuit, 

technology used in manufacturing the 

components, efficiency of component design and 

most importantly, the amount of work done [13]. 

Removing the heat generated allows component 

to operate on their safe operating temperature 

failure of which may lead to service degradation 

or complete damage of the component. 
III. FACTORS INFLUENCING ENERGY 

CONSUMPTION IN VIRTUALIZED 

ENVIRONMENTS 

As shown previously, datacentre servers 

consume the most energy in a cloud computing 

environment. Further, it has been shown that 

excessive energy consumption raises 

environmental, system performance and 

monetary concerns. Therefore, it is imperative to 

find out the factors, which determine the amount 

of energy consumed by a datacentre and hence 

the causes of energy wastage in cloud 

datacentres. 

 

 

 



A. Level of Server Utilization  

Server utilization is the percentage of time 

during which a server is busy processing 

workload tasks and it depends on how workload 

patterns vary from time to time [5].  Low server 

utilization is a major cause of energy wastage and 

is causes by inefficient utilization of computing 

resources [9]. At high server utilization, 

computing resources are efficiently used and as a 

result, less physical server are used hence saving 

energy that would have been used by powering 

more servers. Generally, the level of server 

utilization determines how well energy is utilized 

in a server [5]. [16] reports that average server 

utilization for small-to-medium datacentres, with 

market segmentation by electricity consumption 

of 49%, is 10%, and 50% for High Performance 

Computing (HPC) datacentres, whose market 

segmentation by electricity consumption is 1%, 

and that the physical machines drew up to 90% of 

their peak power. Clearly, this is resource over-

provisioning, which leads to increased energy 

consumption because many servers have to be 

used.  

A six-month data analysed from about 5000 

servers revealed that, although servers are 

generally not idle, their utilization never reaches 

100% [5]. According to an analysis conducted by 

[17] on Google cluster’s resource usage, 65 % of 

CPU and 45 % of memory goes to waste. This 

shows that application workloads utilizes less 

resources than what is provisioned- low server 

utilization. With high resource utilization, the 

number of physical servers required will be 

greatly reduced thus reducing the amount of 

energy used in datacentres. 

Moreover, slim dynamic power ranges cause 

low server utilization because even an idle server 

consumed up to 70% of its peak power [3]. In this 

regard, it makes sense to operate at high server 

utilization levels. However, according to [18], 

there are three main challenges towards ensuring 

that servers are fully utilized at 100% all the time. 

These challenges are; diurnal patterns 

experienced on server workloads and load spikes, 

which calls for resource over-provisioning 

leaving servers underutilized, servers are 

heterogeneous and have changing configuration, 

thus matching diverse workloads to the servers is 

not trivial and at high server utilization, there is 

interference due to resource contention leading to 

performance loss. Particularly, interference has 

diverse effects on QoS especially on latency-

critical workloads. 

B. Idle Energy Wastage  

Idle server can consume over 70% of their 

peak energy hence it could potentially be turned 

off to save energy [9]. This behaviour of severs 

do not represent any proportionality in increase of 

energy consumption with respect to system 

throughput. As a result, a server running at 20% 

can consume 80% of energy consumed by a 

server operating at 100% [19]. This represents a 

huge energy loss when servers run idle without 

any throughput and is usually the case for many 

typical servers. In this regard, one can see that this 

is a cause of idle energy wastage. Moreover, if an 

application workload does not utilize computing 

resources in a balanced manner, the idle 

components will also waste idle energy [20]. For 

example, if an application workload is CPU 

intensive, then memory idle energy goes to 

wastage. Therefore, it is essential that co-located 

VMs utilize all computing resource without 

leaving some being idle. 

Moreover, [16] reported that as the number of 

servers in a datacentre continue to grow, so is the 

number of comatose servers. A comatose server 

is a server that is powered and uses electrical 

energy without delivering any useful service. 

Such servers may have been left when a certain 

project ended or a business process changed and 

since then, the servers were not removed or no 

one is tracking them. According to [16], an 

estimated 20 to 30 percent of all servers in large 

datacentres are idle, unused or obsolete but still 

consume energy. The main causes of rise of 

comatose servers in datacentres is lack of focus 

such as not budgeting time for staff to identify 

and remove comatose servers and aversion to risk 

such as IT managers fear that, by removing any 

previously installed servers, they may interfere 

with application functions that occasionally run 

on the servers.  

C. Adoption of Energy Efficient Solutions  

[16] reports that it is only large cloud firms 

that have adopted energy efficient datacentre 

practices. Alas, these firms account for only 5 

percent of global energy consumption. The rest, 

95 percent, is left to small and medium firms, 

which are terribly energy inefficient because of 

lack of adoption of energy efficient solutions and 

practices. Such solutions and practices include 

server and network consolidation, datacentre 

wide thermal management, purchasing and 

installing energy efficient hardware to replace old 

hardware, power planning and management (such 

as checking from time to time to identify and 

remove idle servers) and installation of energy 

management software [16].   



Although rising energy costs is an incentive to 

adoption of energy efficient practices, pressure to 

keep up technological advancements have made 

many organizations to treat energy efficiency 

with low priority [16]. This has led to 

organizations not adopting even the simple and 

cost-effective power management software, 

which can monitor measure and manage both 

hardware level and software level energy usage. 

For example, energy management software 

offered by TSO Logic is relatively affordable and 

can measure datacentre power demands, active 

and comatose servers and energy cost, as well 

show how these change over time and assist in 

relocating application workloads and shutting 

down servers [21]. Nevertheless, some datacentre 

operators feel that by adopting automated energy 

usage monitoring, their employment is threatened 

and thus they discourage its adoption [16].  

Moreover, power-saving features embedded in 

hardware, which can monitor hardware 

utilization and report to datacentre dashboards, 

are often disabled because of the perceived 

management complexity and risk associated with 

switching off servers. In this regard, even 

organization running full-scale cloud clusters do 

not deploy energy management solutions. 

In addition, cloud providers have poor habits 

of procurement, which includes focusing on 

initial cost rather than TCO [16].  When a 

procurement procedure focusses only on initial 

purchase rather than long-term electricity costs, it 

may miss on energy efficient equipment in the 

market. For example, [22] reports that with the 

arrival of Intel’s Sandy Bridge and Standard 

Performance Evaluation Corporation Power 

(SPECPower) benchmark, energy-proportional 

computing is achievable hence energy 

consumption by servers at idle state and low 

utilization can be reduced. Furthermore, [16] 

highlights that 80 percent of IT departments in 

most cloud service providers do not pay their 

power bills (finance department does) and so they 

do not see the need to make datacentre energy 

efficiency a priority. In addition, the IT depart do 

not see any incentive for implementing energy 

efficient practices because they are not evaluated 

based on the amount energy saved. In fact, IT 

staff have no access to power bills and most of 

them are more concerned with software costs. 

This division of accountability and split 

incentives are a barrier to adoption of energy 

efficient solutions.    

D. Server Utilization Metric  

Server utilization metric is the unit of measure 

of the percentage of time during which a server is 

busy processing workload tasks [5]. Lack of a 

common standardized server utilization metric 

has been a cause for energy wastage for many 

decades [16]. Increasing server utilization offers 

the best option for improving datacentre IT 

energy productivity as compared to PUE and 

Power Supply Efficiency (PSE) [23]. In fact, 

below 50 percent server utilization, a continued 

increase in server utilization offers the highest 

energy usage productivity because of the idle 

energy [3] [5] [18] [19]. 

For many years, CPU utilization has been the 

measure of server utilization but it is not the best 

since different application workloads have 

different CPU intensities with some of them 

being memory, network or I/O intensive than 

CPU-intensive. Besides, CPU shows the amount 

of work with no way of determining if that work 

is useful or otherwise [16]. As a result, a number 

of new metrics have sprung up to take care of 

other datacentre parameters. For example, the 

[24] developed a metric based on datacentre 

design, executing software, datacentre hardware, 

CPU, memory and disk as parameters.  [24] also 

developed another metric, which attempts to 

measure server utilization at application level, for 

example tracking the number of emails sent by a 

server.  

Other metrics include Power to 

Performance Effectiveness (PPE), which 

measures server performance per kilowatt, and 

SPECpower_ssj2008v1.12, which provides a 

means to measure power in conjunction with a 

performance metric. Unfortunately, there is a 

slow adoption of these metrics because they are 

complicated to implement and cannot deliver 

complete reports on their own without the need 

multiple implementations. Furthermore, different 

server designs have different levels of energy 

efficiency hence cannot work across all server 

designs. Therefore, average CPU utilization and 

average datacentre utilization (average server 

utilization when not in sleep mode over period), 

will remain in use until better metric better are 

developed. 

E. Energy Saving Hardware Capabilities  

A server is made up of many components such 

as CPU, memory, fans, power supply and disks 

whose power consumption efficiency 

manufacturers can improve by providing 

hardware optimization [25]. For instance, in High 

Performance Computing (HPC), servers 

frequently access storage disks thus consuming 

more energy. However, by spinning down the 

disk platters, less energy is consumed [25]. 

Generally, the objective is to reduce disk access 



so that the disks are spun down as long as 

possible. In this regard, Hard Disk Drives 

(HDDs) are being replaced by Solid State Drives 

(SSDs), which becoming increasingly affordable 

and consume less energy. There are a number of 

ways in which SSDs assists in reducing power 

usage. SDDs utilize flash memory and do not 

have any moving parts, which would consume 

energy. On the other hand, SDDs are ideal for 

high-density VM environments because they 

provide high-speed and consistent access, which 

results to less time spent in storage access 

operations. Besides, because SSDs are ideal for 

high-density VM environments, it can enable a 

PM to hold many VMs without loss of 

performance [26]. Furthermore, [26] reports that 

SSDs require 79% less power for cooling as 

compared to traditional HDDs. All these benefits 

result to energy saving in datacentres.  

In addition, manufacturers can allow 

individual server components to go to sleep mode 

independently when they are not in use [25]. For 

example, during computing phases, Network 

Interface Card (NIC) can be put to sleep state 

since they may not be required. Moreover, 

manufacturers can increase frequencies, speeds 

and voltages available to component making it 

able to adjust to current load in what is termed as 

proportional computing [25].   

Moreover, Intel announced that the design of 

their new processors could be in favour of energy 

efficiency over speed, which technically calls to 

an end Moore’s Law [27]. Prior to this, Intel had 

produced the core M series processors, which 

were 50 percent faster compute speed, 40 percent 

faster graphics performance and 20 percent 

longer battery life [28]. However, this family of 

processors have not been used in commercial 

servers. On the other hand, AMD developed 

Accelerated Processing Unit (APU), which is 

formally a CPU and Graphics Processing Unit 

(GPU) on a single chip. The aim of this design 

was to reduce energy consumption and it helped 

reduce energy consumption of between 10 and 20 

percent [29].   

Although the deployment of energy-efficient 

hardware is a crucial step, getting rid of 

underutilized servers is a far more effective 

approach, which is possible through effective 

consolidation [30]. Effective consolidation can be 

achieved through monitoring resource utilization 

by application workloads as well as QoS.  

F. Datacentre Thermal Management   

Thermal management is made possible by 

cooling by use of cooling units and fans, whose 

actions are controlled by the ambient 

temperatures in a datacentre [31]. Any increase in 

temperature would cause an increase in cooling 

energy. Therefore, the amount of heat produced 

by a server is an important consideration in 

managing energy usage in datacentres. As 

illustrated in Figure 6, 33 percent of datacentre 

energy is used up by the cooling unit, which is 

more than half of that used by IT load (59 

percent).  

[31] proposed a thermal-aware algorithm 

whose aim was to maintain uniform server 

tempearture by maintaining a uniform load across 

servers of a cluster. According to the algorithm, 

server tempearture should not exceed the server’s 

treshold temperature and if it does, VM(s) is 

migrated to another server. In addition, the 

algorithm detects server underload to ensure 

maximum server utilization. In summary, the 

authors’ idea is to reduce server hot spots (server 

with peak temperature) in a datacenter by sharing 

heat production, which occasionally forces the 

cooling units to cool the entire system, including 

the ‘colder’ servers.  

In a review, [32] describes a thermal-aware 

resource allocation technique in which energy 

consumed by the cooling unit is reduced by 

ensuring that individual tasks are completed by 

their deadlines. The objective is to determine a 

performnce state within a server, which results to 

less energy consuption by the cooling while 

completing a workloads task by its indidual 

deadline. The authors reported a 9 percent 

reduction in power consumption on simulated 

experiments. 

In addition, to reduce energy consumed by the 

cooling unit, some cloud computing providers 

have located clusters in cold geographical 

locations and udersea to benefit from free cooling 

such as Microsoft [33] and Google [34]. 

According to [33], putting a datacenter under the 

sea not only derives a benefit of free cooling, but 

also from logistics advantage because many 

people live close to the sea and that clean energy 

can be generated from sea waves to be used in the 

datacenter. Google has also successifully 

deployed datacenters close to sea such Google 

Hamina plant and others in Finland to benefit 

from cool climate [34]. 

G. Computing Proportinality  

[35] cited in [3] defines proportional 

computing as energy efficiency technique where 

the energy consumption by servers is 

proportional to the workload. In this regard, idle 

servers should consume no energy. 

Unfortunately, energy consumption of computing 

units is not energy-proportional: when server load 



is low, energy consumption is still high. 

Proportional computing is achieved by DVFS. 

DVFS is an energy saving technique in computer 

architecture that is used to save energy when 

server load is low [3]. In this technique, the 

frequency and voltage of the CPU is scaled 

dynamically to relate with the amount of server 

load. According to this approach, if the server 

load is at X percent of peak load, then the energy 

consumption should be at X percent of peak 

energy. Dynamic Voltage and Frequency scaling 

of CPU is applied for improving the energy 

consumption of the datacentre. The frequency of 

CPU is decided according to the workload by the 

resource controller, which is installed on each 

server [5].  

DVFS has been used to build products 

available in the market such AMD Turbo Core, 

Intel Turbo Boost, and Intel Enhanced Speed 

Stepping Technology to reduce energy 

consumption according to workload [3]. [36] 

used the concept of DVFS in live VM migration. 

Their propossal involves monitoring CPU 

utilization, DVFS adjustment, and real-time 

migration. They report a reduction of execution 

time and energy consumption. Unfortunately, 

they note that this method has a limitation when 

the number of VMs in a PM approach the 

maximum. Moreover, DVFS is hardware-based 

technique and works well only on CPU bound 

tasks because dynamic power ranges for other 

components (memory, disk and network) are 

much narrower (< 50% for DRAM, 25% for disk 

drives, and 15% for network switches) [5].  

[37] presents DVFS-enabled Energy-efficient 

Workflow Task Scheduling algorithm (DEWTS) 

tool, which uses DVFS and their experiments 

reports a 46.5% energy savings. Conversely, as 

DVFS is too dependent on the hardware, the 

resulting energy savings are low compared to 

other methods [9]. Although DVFS is a good 

solution, its savings are small because an idle 

server will still consume over 70% of peak energy 

[3].  

Because of the observed failures of DVFS, 

powering down or switching off servers when 

they are not in use is a viable option and has been 

supported by a number of researchers [5] [9] [14]. 

H. Server Power Switching 

Switching off unused or idle servers can result 

to significant power savings because they 

consume over 70% of peak energy [5] [38]. The 

servers would then be turned on when needed. 

However, deciding which server to switch off, 

when to do it and for how long is a complex 

process, which calls for careful planning. For this 

reason, server shutdown techniques have been 

developed to keep the number powered servers in 

line with actual workloads.  Unfortunately, 

datacentre administrators have not embraced 

these techniques [16] [39]. This is because, until 

recently, servers were not designed to be 

switched off and that switching off and switching 

on later consumes energy and takes time [39]. 

Therefore, datacentre administrators have not 

embraced this technique for fear of interrupting 

with services, potential hardware failure and 

inability to quantify energy gains versus loss of 

service quality due to long booting time. 

According to [39], shutdown techniques 

require that datacentre hardware have the ability 

to remotely switch off and on servers and that 

energy-aware algorithms should utilize this 

ability in a timely manner. The implementation of 

Advanced Configuration and Power Interface 

(ACPI) has five sleep states on the Linux kernel- 

suspend to idle, standby, suspend-to-RAM, 

suspend to disk and system shutdown state [39]. 

However, for datacentres, suspend to idle and 

system shutdown state are available for use. 

Suspend to idle allows all user spaces to be frozen 

and all I/O devices to be put into low energy 

states. System shutdown shuts down the system 

completely such that the system has no memory 

state and is not performing any task. With this 

option, the server consumes no energy and 

requires a complete boot to bring it on.  

[39] describes a shutdown strategy by 

considering the time a server is idle and using this 

time to decide whether a server should be 

switched off. The authors defines a time Ts, which 

is a time threshold such that, if a server is idle for 

less than Ts, then it should remain idle to save 

energy. Additionally, Ts should be greater than 

the total time the server takes to switch off and 

on. There are two ideal shutdown policies: 

knowing the future and aggressive shutdown [39]. 

Knowing the future posits that the future dates 

and lengths of idle period are known for each 

server. On the other hand, aggressive shutdown 

posits that a server is shut down immediately it is 

idle without any prediction attempt. Although 

both of these policies have been found to save 

energy, the latter consumes more energy because 

idle server periods may be less than Ts. 

Although shutdown techniques save energy, 

they cannot be used in isolation. For instance, if 

servers run at peak load consistently, which is 

rare though, energy savings from this technique 

will not be felt. Thus, other techniques such 

energy- workload consolidation need to be used.  

I. Workload Consolidation  



Workload consolidation has been studied 

extensively by many researchers [40] [41] [42] 

[43]. Dynamic consolidation reduces the number 

powered servers by consolidating workloads to 

fewer servers thus effectively improving server 

utilization. Additionally, when a server is idle, it 

is shutdown [18] [19] [3] [5]. This section 

describes the different approaches and 

techniques, which support consolidation such as 

VM migration and placement, VM sizing and 

workload characterization and how they affect 

energy usage in cloud computing environments.  

1) VM Migration and Placement  

VM placement is defined as placing a new 

VM in a selected PM whereas VM migration is a 

dynamic consolidation technique, which involves 

moving a VM from one PM to another [9]. To 

ensure energy efficiency, the problem of VM 

consolidation can be divided into three sub-

problems; - when to migrate, which VM to 

migrate and where to migrate [40] [44]. 

According to these sub-problems, it is important 

to know the right time to migrate, the right VM to 

migrate and the right destination PM in order to 

be energy efficient. One of the triggers of ‘when 

to migrate’ sub-problem is the QoS [40]. In this 

case, overloaded or under-loaded servers are 

detected for purposes of VM migration. If a 

migration is triggered, the next step is to 

determine which VM to migrate. In the case of 

under-loaded host (PM), all VMs are moved to 

another PM and such a host put to idle mode or 

shutdown. In the case of host overload, one or 

more VMs need to be migrated until the host’s 

load balances. [40] has studid three VM selection 

policies namely Maximum correlation, Minimum 

Migration Time and Random selection. [44] has 

summerized some the heuristics for VM 

consolidation using migration as shown in Table 

1.  
Table 1: Heuristics for VM consolidation using migration 

[44] 

After VM selection, determinants for 

‘where to migrate’ sub-problem include co-

located VM interference, correlation between 

workloads of co-located VMs and statistical 

muptiplexing.  
 

 

Co-located VM interfearance is as a 

result of resource contention where demand to a 

particular resource by co-located VM exceeds its 

supply. If VM interfearance is ignored during 

VM migration, performance degradation and 

potential energy wastage is the result [45]. Also 

known as joint VM provisioning, statistical 

muptiplexing enables a VM to borrow resources 

from co-located VMs while it experiences peak 

workloads [46]. Correlation between workloads 

of co-located VMs is used so as to consolidate 

VMs with least correlation (in terms  of resource 

demands) such that resources underutilized by 

one VM can be utilized by a co-located VM at 

peak time [47]. According to this technique, all 

co-located VMs cannot peak at the same time 

[23].  

[48] presents a power-aware algorithm 

(PA) for determining the most suitable PM to shut 

down for energy savings. They combine it with 

remaining utilization-aware (RUA), a VM 

placement algorithm. Their experiments show 

that there is a trade-off between energy 

consumption due to server utilization and SLA 

violations. To shut down underutilized servers, 

under-loaded servers are detected and then all 

VMs migrated to other suitable servers using live 

migration. The aim is to ensure that all server 

resources remain very high by maintaining a 

higher server utilization level. Unfortunately, 

[43] asserts that power consumption and 

throughput increase linearly up to a certain point 

of resource utilization. Aggressive utilization 

would cause a slight service degradation but a 

drop in power consumption. Additionally, the 

degradation caused by aggressive resource 

utilization causes increase in execution time, 

which in turn encroaches into energy saving 

made from reduced idle energy [20]. In this 

regard, the challenge is to obtain an optimal 

performance and energy point. Thus, utilizing 

resources at 100 % may not necessarily be energy 

efficient.   

VM placement has undoubtedly been 

studied and considerable advances made - both 

energy-aware and thermal-aware [14] [40]. [49] 

proposes a proactive thermo-aware VM 

placement algorithm, which takes into current 

and maximum temperature (threshold 

temperature) before making a VM placement 

decision. The incoming VM is thus placed in a 

PM, which has the highest difference between 

current temperature and the threshold 

temperature. This is to avoid chances of hardware 

and software failure and most importantly to 

reduce energy used for cooling due to 



temperature rise caused by VM activation. The 

same concept can be used to perform thermo-

aware VM migration. However, it is hard to 

predict temperature rise due to VM activation as 

well as the temperature rise owing to the number 

of VM already present in the PM. 

A VM placement algorithm has two main 

goals – ensuring QoS and energy saving [50] 

[51]. Poor VM placement may lead to triggering 

new VM migrations, energy wastage and SLA 

violations. VM placement is purely an 

optimization problem. To solve the optimization 

problem, many researchers have proposed a 

number of solutions which include constraint 

programming [38] [52], bin packing (BP) [38] [9] 

[17], stochastic integer programming [53], 

genetic algorithms [50].  

Additionally, many factors such as 

current server load (discussed earlier), 

temperature (discussed earlier) and cluster 

location are taken into account before VM 

placement in decided. For instance, according to 

[17], cloud datacenters are made of clusters 

located in different locations to exploit reduced 

electricity costs and thus clusters at regions of 

lower electricity costs may be selected to host 

incoming VM.  Once a cluster is selected, the next 

stept is to determine the PM in cluster that will 

host an incomming VM. In this case, the authors 

see VM consolidation problen as a BP 

optimization problem in which PMs are viewed 

as bins with different capabilities and VMs as 

objects with different sizes (resource demands) 

and the objective is to pack these objects in as few 

bins as possible. BP problem is known to be NP-

hard [17]. Thus, heuristics such as First Fit, Next 

Fit and Best Fit can be used to map VM to PM. 

[5] proposed an algorithm to PM overload for 

known stationary workloads. For non-stationary 

workloads, the author used Markov chain model. 

Results showed that the method achieved energy 

savings and as well as QoS. [6] have examined 

the problem of VM selection for migration. They 

compared Minimization of Migrations (MM) and 

Highest Potential Growth (HPG) VM selection 

policies with the Random choice (RC). MM’s 

objective is to minimize migration overhead 

(energy consumed and performance loss) 

whereas HPG aims at reducing CPU usage to 

minimize SLA violation. Their results showed 

that MM outperforms HP and RS. 

[54] proposed a VM selection techniques 

based on complementary workload patterns. In 

this proposal, workloads that do not peak at the 

same time can be co-located, which resulted to 

reducing resource contention. This was the basis 

of selecting a VM for migration. Further, [54] 

proposed an efficient technique for VM resource 

provisioning based on the fact that peaks and 

valleys in one workload pattern do not 

necessarily coincide with the others. This 

approach exploited statistical multiplexing where 

unutilized resources of one VMs can be borrowed 

by a co-located VMs. Although this method is 

good, it not be suitable in multi-tenant cloud 

environments and further, it may not be suitable 

if all the VM peak simultaneously.  

[55] proposed a dynamic consolidation 

algorithm based on constraint problem solving. 

The authors formulated a VM allocation problem, 

then applied Choco constraint solver to solve the 

optimization problem to satisfy constraints, 

which were minimizing cost of migration and 

minimizing the number of active nodes and 

available computing resources (CPU and 

memory). Their approach mapped tasks to nodes 

that are better than those found by heuristics 

using local optimization. Keeping the number of 

active nodes low saves energy and taking 

migration overhead into an account maintains 

throughput.   

[56] proposed a VM resizing stategy via 

CPU resource. According to the authors, 

computing resources are added to or removed 

from the VM depending on the current demands. 

The same approach could be used to meter other 

VM parameters. However, it is unclear how 

resource contention was dealth with, incase many 

VMs demanded a similar resource simultaneosly.  

[57] proposed a dynamic consolidation 

technique whose objective is to reduce idle power 

wastage and improve performance. The authors 

observed that there was an energy cost and 

performance overhead during server start up. In 

this regard, however, if a server has no task to 

process, it is not switched off. Instead, it is put 

into idle state for while (time T) before it 

swirched off  during which an assessment is done 

to find out how long it will take for the machine 

to be useful again. This is to ensure that energy 

consumed by shutting and booting the machine 

does not exceed the energy consumed by idle 

server.  

 

2) VM Sizing  

VM size is the measure of computing 

resources –CPU, Memory and I/O – assigned to a 

VM [3]. For instance, IaaS cloud VM can be sized 

to have 1 VCPU, 1 GB memory, 2000 GB 

network bandwidth and 25 GB of SSD. Most IaaS 

cloud providers require its users to determine the 

resource demands of their VMs. For 



unexperienced users, this is be easy. However, for 

unexperienced users, much resources, than 

required, are assigned to VMs leading to server 

underutilization [58], which is a major cause of 

energy wastage in the cloud.  According to an 

analysis conducted by [17] on Google cluster 

trace on resource usage, 65 percent of CPU and 

45 percent of memory is unused. Thus, new 

techniques need to be developed to deal with VM 

sizing amid unpredictable worload changes in 

VMs.  

VM sizing techniques can be categorised as 

static or dynamic [3]. Static techniques involves 

fixing VM sizes and consolidating them in fewer 

PMs possible or characterizing workloads, then 

sizing VMs according to application worload. 

Unfortunately, static techniques are not the best 

because application workloads resource demands 

change frequently. This situation can be handled 

by using dynamic VM sizing. In dynamic VM 

sizing, VM configurations are adjusted at runtime 

to meet VM applications resource demands. The 

ultimate objective of dynamic VM sizing is to 

reduce resource underprovisioning and 

overprovisioning.  

Underprovisioning, which leads to resource 

underutilization, can be avoided by using a 

techniques known as resource overcommitment 

[17]. This technique involves allocating resources 

to the VMs than a host PM can afford. For 

instance,  allocating 4 VMs 2GB each of RAM on 

a PM with 6GB of RAM. Overcommitment 

assumes that no VM will utilize all the resources 

that is allocated to it, thus more VMs can be 

placed in one PM, hence reducing energy 

consumed as fewer PMs. One downside of 

resource overcommitment is when the total 

resource request by VMs exceed what the PM can 

provide – overload. In overload situations, VM 

migration is triggered to avoid service 

degradation thus reducing chances of SLA 

violation. According to [17] it is difficult to 

determine the level of resource overcommitment. 

To address this, the same author proposes an 

approach called prediction. In this case, one 

needs to predict future aggregate resource 

demands for the VMs, which assists in estimating 

a resoanable overcommitment level.  

3) VM Workload Characterization and 

Mixing 

[59] defines workload as “a specific amount 

of work computed or processed within the 

datacentre with defined resource consumption 

patterns”.  A typical system workload may 

include tasks to be performed and the users 

submitting requests. Understanding system 

workload is the basis of understanding resource 

demands. When applications runs in the servers, 

the system is able to record application resource 

demand in form of logs, which may be analysed 

for use in resource planning. Because of security 

concerns, real back-end application logs are not 

publicly available. However, in 2009 and 2012, 

Google released its first and second version of 

production back-end trace logs respectively. The 

second version is more detailed as it contains 

machine details and resource demands [60].  

Workload attributes are used for modelling 

and are based on resource usage of jobs and tasks 

or their intensity [61]. When selecting a technique 

for workload modelling, a number of workload 

attributes have to be considered. Typically, a 

workload arriving as user request may possess the 

time when such request was made as well as the 

amount of resources computing resources (CPU, 

I/O and memory).  

Workloads are characterized to learn their 

behaviour. Characterization is based on the 

workload attributes. Advanced numerical and 

statistical techniques are required to capture 

workload heterogeneity or homogeneity to result 

to realistic models. A good example is clustering 

and fitting. Clustering is used to identify 

workloads that exhibit similar behaviour. A 

commonly used clustering algorithm is K-means 

[62].  A time series approach can also be used to 

determine resource usage patterns. Besides, 

clustering technique can identify groups of VMs 

with workload patterns whereas Hidden Markov 

predicts the changes of these patterns [61] [63]. 

The concept of predicting the changes of these 

patterns is applied in dynamic VM sizing. 

Extensive research on workload modelling has 

been done on publicly available Google cluster 

trace logs. 

Although a cloud enter is not expected to run 

at its maximum – peak load - , the concept of 

shutting down underutilized machine does not 

have any energy at peak load. Thus, workload 

profile can be used to make a decision on the 

technique to use in saving energy in the cloud. 

For example, the CPU frequency and voltage can 

be adjusted depending on the workload – DVFS 

as discussed earlier. Further, the workload profile 

of co-located VMs can determine energy 

efficiency in a PM because of workload 

interference due to resource contention. 

Workload characterization also assists in 

designing multiplexing, interference-aware and 

correlation-aware algorithms and dynamic VM 

sizing for saving energy in cloud environments as 

discussed earlier.  



[64] investigated the effect of different 

workloads on server power consumption in a 

private cloud. The authors found that placing 

many CPU-intensive VMs workloads in the same 

PM will have a detrimental effect in terms of 

perfomance and power consumption. According 

to the authors, it is wise to pair VMs, which do 

not consume a large amount of a similar resource. 

For instance, pairing a CPU intensive VM with a 

disk intensive VM in the same PM.. 

[60]have characterised workloads on a 

Google cluster. The frequency and pattern of job 

and task-level workload behavior, and how the 

overall cluster resources are utilized is studied. 

The success rate of jobs and tasks are studied i.e. 

successiful tasks and jobs and those that 

eventually fail or get killed. The authors have 

concluded that if the resource scheduler is offered 

hints about the nature and periodicity of the 

submitted jobs, it may specialize the resource 

management decisions in order to save energy 

and reduce performance variations of important 

jobs.  

Using Windows Live Messenger and 

Windows Azure workload traces, [65] described 

an energy-aware server provisioning strategy that 

predicts near future resource demands via load 

patterns analysis, auto-correlations and cluster 

utilization. Their objective was to minimize 

unmet resource demands while reducing energy 

usage and cost of hosting clusters. Their strategy 

was tested  on a three data center workloads and 

results showed that energy savings are close to 

optimal.  

[43] investigated the effect of workload 

profile on power consumption. The authors used 

TPC-W workload generator tool and varied client 

behavior using browsing and ordering profiles. 

They observed that power consumption is greater 

under ordering than under browsing while both 

have the same throughput. Thus, it is wise to 

determine an optimal workload mix (ordering and 

browsing), which delivers energy savings.  

[62] have proposed a model for energy saving 

in IaaS cloud via migration. They use K-means to 

cluster workloads, which is the basis of detecting 

PM overload and underload that triggers VM 

migration. Using this chracterization, their model 

is able to determine resource demands in real time 

so that VM scheduling is done effiently hence 

reducing energy consuption. In their experments, 

they use Google cluster trace logs.  

[66] describes an architecture that 

charaterizes dynamic energy consumption 

(energy consumed by Cloud tasks) of tasks 

(communication, storage and computation) by 

analysing the characteristics of the tasks and the 

impact of system configurations. The architecture 

investigates the energy consumption patterns of 

tasks under different systems configurations. 

Once an appropriate energy-saving configuration 

is detected, communication is sent to an 

appropriate cloud environment monitoring 

framework for comparison with other 

configurations. The confirations that achives least 

energy is activated and adopted.  

[67] proposed a new architecture, which 

allocates groups of tasks to customized VMs 

based on task characteristics in container-based 

clouds. This mapping is based on actual task 

resource usage patterns obtained from an analysis 

of real usage trace logs instead of the resources 

requested by cloud users. The authors used 

second version of Google cluster trace logs and 

X-means for clustering algorithm (a variant of K-

Means clustering algorithm). [58] and [68] 

proposed a workload mix aware resource 

provisioning technique, which can predict non-

stationary workloads. The technique predicts 

future server capacity and this was important in 

avoiding resource over-provisioning and under-

provisioning. Although the primary objective of 

the authors was not energy efficiency, efficient 

recource consolidation can achieve energy 

saving, for example where avoiding over-

provisioning can reduce the number of active 

PMs.  

[17] observed that one of the reasons of 

energy wastage in a datacenter is having idle 

servers, which are consuming electrical energy 

but not delivering any useful service. Therefore, 

it makes sense to switch off idle servers. 

However, switching off a server just because it is 

idle will not necessarily save energy because the 

amount of energy consumed by switching off and 

on, may exceed energy consumed by letting the 

server remain in active state. This is partly 

because the cloud manager is unware of the 

length of time the server will remain idle before 

it needed again to provide service. Therefore, it 

makes sense that if the server is not needed for a 

long time, switching it off will save energy. In 

this regard, the authors proposed a workload 

predictor to assist in estimating future workloads, 

which will in turn determine how long the server 

is expected to remain idle. However, predicting 

workloads is not trivial because of the frequency 

of client requests and different combinations of 

resource requests. For this reasons, the authors 

categorised requests based on their charactericts 

(frequence and resource demands) via clustering 

and each category has a unique predictor. The 



resulting clusters are a basis for resource 

estimation. 

IV. CONCLUSION 

This paper provides an highlight on the 

sources of energy consumption and the factors 

that influence energy consumption in cloud 

computing environments. As future work, a 

conceptual model will be developed, which will 

aid in developing energy efficient solution for the 

cloud environments based on the factors 

identified. 
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