6 research outputs found

    Postharvest Preservation Technology of Cereals and Legumes

    Get PDF
    Cereals and legumes are prone to perishability and have very short shelf-life if not given proper treatment. During different handling and marketing operations, there is a huge postharvest loss of agricultural produce. The qualitative and quantitative losses incurred in cereals and legumes commodities between harvest and consumption are huge. Qualitative losses such as loss inedibility, nutritional quality, calorific value, and consumer acceptability of fresh produce are much more difficult to assess than are quantitative losses. The major cause of postharvest loss (PHL) is the availability of poor infrastructure for postharvest technology (PHT) and processing of commodities. These losses can only be minimized by proper handling, marketing, and processing of the agricultural commodities; as well as the use of modern preservation technologies such as irradiation, radio frequency heating, etc. The sufficient knowledge of pre-and post-harvest preservation technologies and the provision of adequate and sufficient storage facilities for cereals and legumes handling and distribution would help to mitigate the incidence of postharvest deterioration and therefore improve the availability of cereals and legumes in the market and subsequent reduction in malnutrition for increased food security. Postharvest preservation technology of cereals and legumes is very fundamental in reducing postharvest losses and increasing food security

    Potentials of 3D extrusion‐based printing in resolving food processing challenges: A perspective review

    Get PDF
    Three-dimensional (3D) printing has promising application potentials in improving food product manufacturing, increasingly helping in simplifying the supply chain, as well as expanding the utilization of food materials. To further understand the current situation of 3D food printing in providing food engineering solutions with customized design, the authors checked recently conducted reviews and considered the extrusion-based type to deserve additional literature synthesis. In this perspective review, therefore, we scoped the potentials of 3D extrusion-based printing in resolving food processing challenges. The evolving trends of 3D food printing technologies, fundamentals of extrusion processes, food printer, and printing enhancement, (extrusion) food systems, algorithm development, and associated food rheological properties were discussed. The (extrusion) mechanism in 3D food printing involving some essentials for material flow and configuration, its uniqueness, suitability, and printability to food materials, (food material) types in the extrusion-based (3D food printing), together with essential food properties and their dynamics were also discussed. Additionally, some bottlenecks/concerns still applicable to extrusion-based 3D food printing were brainstormed. Developing enhanced calibrating techniques for 3D printing materials, and designing better methods of integrating data will help improve the algorithmic representations of printed foods. Rheological complexities associated with the extrusion-based 3D food printing require both industry and researchers to work together so as to tackle the (rheological) shifts that make (food) materials unsuitable.info:eu-repo/semantics/publishedVersio

    Evaluation of the Prevalence of Congeners from Distilled Spirits of Different Sources

    No full text
    Aim: With recent increase in health-related incidence arising from consumption of spirit beverages in Nigeria, there is need to investigate the prevalence of possible contaminants in spirits that may have toxicological effect on human when consumed. The purpose of this study was to determine the type and levels of congeners present in spirits obtained from fermentates of cassava, molasses and palm wine purchased from different locations. Study Design: This study was made to fit a one way Analysis of Variance. Place and Duration of Study: The research was carried out at laboratory of Department of Food Science and Technology, Federal University of Technology, Owerri and Project Development Agency (PRODA) Enugu and International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria, between April 2017 and November 2018. Methodology: Analysis of common congeners in spirits of cassava, molasses and palm wine fermentates obtained through distillation method was carried out using the Gas-Chromatography. Physicochemical properties of the spirits measured were specific gravity, pH and viscosity. The spirit distillates were analysed for concentrations of ethanol, higher alcohols and possible congeners such as esters, ethyl carbamate (EC) and ethyl acetate. Results: The distillates yielded alcoholic content of 39.00 to 46.71%. Ethyl carbamate content of spirits from cassava recorded an average mean value of 13.44 ”g/l which was not significantly different from (P > .05) spirits from molasses and palm wine, with an average mean values of 12.49 ”g/l and 13.75 ”g/l respectively. The most important higher alcohols of the spirit distillates responsible for aromatic characteristic of spirits were found to be 1-propanol (0.06-0.11%), isobutyl alcohol (0.02-0.09%) and isoamyl alcohol (0.12-0.76%). The type and location of raw materials did not significantly affect the concentrations of the available congeners found in the distilled spirits. Good fermentation employed in this research work significantly reduced the concentrations of the detected congeners. Conclusion: Comparing the results with data from literature, it can be concluded that the concentrations of all investigated volatile compounds in the samples of spirits from cassava, palm wine and molasses are commonly acceptable. Federal regulatory agencies such as National Agency for Food Drug Administration and Control (NAFDAC), Standard Organization of Nigeria (SON) should be encouraged to carry out routine analysis on commonly produced and sold spirit beverages in order to prevent sale of contaminated drinks

    Functional Properties of Complementary Food from Millet (Pennisetum glaucum), African Yam Bean (Sphenostylis stenocarpa), and Jackfruit (Artocarpus heterophyllus) Flour Blends: A Comparative Study

    No full text
    The progress towards exploring the potentials of underutilized indigenous food sources via product development to curb food wastage and agro-food extinction is a way of attaining food nutrition and security within a region. In this context, a comparative study involving some functional properties of complementary food from some underutilized foods (millet, African yam bean, and jackfruit) was carried out. Briefly, millet, African yam bean, and jackfruit were subjected to series of processing treatments such as malting, pre-gelatinization, drying, and milling, followed by blending into various ratios to obtain different samples of composite flours as a complementary food. From these, the functional properties, that is, water absorption capacity (WAC), loose bulk density (LBD), packed bulk density (PBD), foam capacity (FC), swelling index (SI), dispersibility, wettability, and sinkability were determined. Results showed that malting and pre-gelatinization influenced the intrinsic functional properties of the flour blends. In addition, composite flours containing malted samples had significantly lower (p<0.05) dispersibility, SI, WAC, LBD, and PBD, but significantly higher (p<0.05) wettability and sinkability. The variations in flour substitution showed no impact on the flour functionality except for SI and dispersibility. All composite flours exhibited an appreciable level of functionality and suitability to be used as a complementary food for weaning purposes. Overall, this research has demonstrated the potentials of utilizing millet, African yam bean, and jackfruit as sustainable nutrient-dense food materials for the production of complementary food

    Changes in anti-nutrient, phytochemical, and micronutrient contents of different processed rubber (Hevea brasiliensis) seed meals

    No full text
    Rubber (Hevea brasiliensis) is a perennial plant crop grown in many parts of Africa, South East Asia, and South America, especially within the hot and humid climatic regions. Rubber seed, either as feed or food, is a useful raw material to produce edible oil and protein. Despite the huge quantity of rubber seeds produced in Nigeria and its potential as a protein source, rubber seeds still appear neglected and under-utilised as feed/food given its perception as inedible and toxic due to the high concentration of cyanogenic glycoside. Therefore, the quest for effective processing technique(s) that would enhance its food use application is very fitting. This current study was directed to determine the changes in anti-nutrient, phytochemical, and micronutrient contents of different processed rubber seed meals. Specifically, the rubber seeds underwent processing, which employed boiling and the combined action of boiling and fermentation methods that brought about three seed meal flour groups, i.e., raw (RRSM), boiled (BRSM), and fermented (FRSM) seed meals. These were subsequently analysed for anti-nutrient/phytochemical (oxalate, phytate, tannin, phenols, saponin, hydrogen cyanide (HCN), alkaloids, flavonoids, and trypsin inhibitors), and micronutrient (which involved minerals (magnesium, phosphorus, calcium, iron, zinc, potassium, sodium, manganese, lead, and selenium) and vitamin (vitamin B1, B2, B3, C, E, and beta carotene)) contents. The results showed that the processing methods used to achieve the RRSM, BRSM, and FRSM, reduced the anti-nutrients (phytate, tannin, and oxalate) below the acceptable limits, and the HCN below the toxic levels. Importantly, the processing methods herein have not yet succeeded in removing HCN in the (processed) rubber seed meals, but can be seen to be heading toward the right direction. The FRSM obtained significantly lower (p < 0.05) anti-nutrient/phytochemical, but significantly higher (p < 0.05) mineral contents, compared with the other groups (RRSM and BRSM), except for flavonoids that obtained a 30% increase over the BRSM. Some mineral and vitamin contents could be lost in the BRSM compared to the others (RRSM and FRSM) in this study. Additionally, the FRSM obtained higher vitamin contents, after those of RRSM. Overall, the combined action of boiling and fermentation should be recommended for the proper utilisation of rubber seed as food/feed

    Revisiting Non-Thermal Food Processing and Preservation Methods—Action Mechanisms, Pros and Cons: A Technological Update (2016–2021)

    Get PDF
    The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.info:eu-repo/semantics/publishedVersio
    corecore