14 research outputs found

    High density Huh7.5 cell hollow fiber bioreactor culture for high-yield production of hepatitis C virus and studies of antivirals

    Get PDF
    Abstract Chronic hepatitis C virus (HCV) infection poses a serious global public health burden. Despite the recent development of effective treatments there is a large unmet need for a prophylactic vaccine. Further, antiviral resistance might compromise treatment efficiency in the future. HCV cell culture systems are typically based on Huh7 and derived hepatoma cell lines cultured in monolayers. However, efficient high cell density culture systems for high-yield HCV production and studies of antivirals are lacking. We established a system based on Huh7.5 cells cultured in a hollow fiber bioreactor in the presence or absence of bovine serum. Using an adapted chimeric genotype 5a virus, we achieved peak HCV infectivity and RNA titers of 7.6 log10 FFU/mL and 10.4 log10 IU/mL, respectively. Bioreactor derived HCV showed high genetic stability, as well as buoyant density, sensitivity to neutralizing antibodies AR3A and AR4A, and dependency on HCV co-receptors CD81 and SR-BI comparable to that of HCV produced in monolayer cell cultures. Using the bioreactor platform, treatment with the NS5A inhibitor daclatasvir resulted in HCV escape mediated by the NS5A resistance substitution Y93H. In conclusion, we established an efficient high cell density HCV culture system with implications for studies of antivirals and vaccine development

    High‐Titer Hepatitis C Virus Production in a Scalable Single‐Use High Cell Density Bioreactor

    Get PDF
    Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log(10) focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 10(10) FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production

    The effect of glycan shift on antibodies against HCV E2 412-425 epitope elicited by chimeric sHBsAg-based virus-like particles

    Get PDF
    Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412–425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412–425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412–425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412–425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412–425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change

    SARS-COV-2 production in a single-use scalable high cell density bioreactor

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the fast development of first-generation vaccines have demonstrated the value of applying a variety of vaccine technology platforms (1). Inactivated vaccines represent a well-known approach, and their manufacturing depends on high-yield virus production in appropriate biosafety level facilities. This study (2) aimed to establish efficient Vero (WHO) cell-based and animal component-free SARS-CoV-2 production in the CelCradle bioreactor (Esco Aster Pte Ltd.). The single-use culture vessels pre-packed with 0.1 L BioNOCII carriers are highly useful for small scale cultivation of adherent cell lines. Cultures were seeded with 1.5 × 10⁸ cells and total cell numbers peaked at 9 days post cell seeding (dpcs) with 2.7–2.8 × 10⁹ cells/vessel in non-infected cultures. To produce virus, cultures were infected at 7 dpcs at total cell numbers of 2.2–2.5 × 10⁹ cells/vessel at a multiplicity of infection of 0.006. Harvest of virus-containing supernatant twice instead of once per day improved the virus yield by 2–7 fold. Introducing a temperature shift from 37°C to 33°C upon the time of infection improved virus yield by 2–9 fold with a considerable decline of infectious titer only after 72 h post infection (hpi). Infectious titers peaked at 7.3 log₁₀ 50% tissue culture infectious dose (TCID₅₀)/mL at 72 hpi, and a total of 10.5 log₁₀ TCID₅₀ were produced in ~5 L (11 harvests). While trypsin has been reported to enhance SARS-CoV-2 spread in cell culture, addition of 0.5% recombinant trypsin from the time of infection did not affect virus yield. Overall, animal component-free production of SARS-CoV-2 in Vero (WHO) cells was successfully established in a single-use packed-bed bioreactor. β-propiolactone inactivated SARS-CoV-2 from this study was immunogenic and induced neutralizing antibodies in mice with mean 50% neutralization titers of 1/150 or 1/580 after three immunizations with doses containing 0.1 µg or 0.5 µg S1 protein, respectively. The CelCradle represents a scalable technology and is a small version of the TideXCell system applying single-use culture vessels with packed-bed volumes of up to 100 L. The potential rapid response to outbreaks with inactivated vaccines has been demonstrated in the SARS-CoV-2 pandemic (1). Vero cells are susceptible to a wide range of viral pathogens (3), and these scalable single-use bioreactors provide a high level of flexibility and potentially decreased response time for production of future emerging viruses for vaccine purposes. References: (1) Poland 2020 Lancet [PMID: 33065034], (2) Offersgaard 2021 Vaccines [PMID: 34209694], (3) Barret 2009 Expert Rev. Vaccines [PMID: 19397417

    Efficacy of ion-channel inhibitors amantadine, memantine and rimantadine for the treatment of SARS-CoV-2 in vitro

    No full text
    We report the in vitro efficacy of ion-channel inhibitors amantadine, memantine and rimantadine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In VeroE6 cells, rimantadine was most potent followed by memantine and amantadine (50% effective concentrations: 36, 80 and 116 ÂľM, respectively). Rimantadine also showed the highest selectivity index, followed by amantadine and memantine (17.3, 12.2 and 7.6, respectively). Similar results were observed in human hepatoma Huh7.5 and lung carcinoma A549-hACE2 cells. Inhibitors interacted in a similar antagonistic manner with remdesivir and had a similar barrier to viral escape. Rimantadine acted mainly at the viral post-entry level and partially at the viral entry level. Based on these results, rimantadine showed the most promise for treatment of SARS-CoV-2

    Identification of Novel Determinants of Neutralization Epitope Shielding for Hepatitis C Virus in Vitro

    No full text
    Epitope shielding is suggested as an important mechanism mediating the escape of hepatitis C virus (HCV) from host-neutralizing antibodies (nAb). [...

    Substitutions in SARS-CoV-2 Mpro Selected by Protease Inhibitor Boceprevir Confer Resistance to Nirmatrelvir

    No full text
    Nirmatrelvir, which targets the SARS-CoV-2 main protease (Mpro), is the first-in-line drug for prevention and treatment of severe COVID-19, and additional Mpro inhibitors are in development. However, the risk of resistance development threatens the future efficacy of such direct-acting antivirals. To gain knowledge on viral correlates of resistance to Mpro inhibitors, we selected resistant SARS-CoV-2 under treatment with the nirmatrelvir-related protease inhibitor boceprevir. SARS-CoV-2 selected during five escape experiments in VeroE6 cells showed cross-resistance to nirmatrelvir with up to 7.3-fold increased half-maximal effective concentration compared to original SARS-CoV-2, determined in concentration–response experiments. Sequence analysis revealed that escape viruses harbored Mpro substitutions L50F and A173V. For reverse genetic studies, these substitutions were introduced into a cell-culture-infectious SARS-CoV-2 clone. Infectivity titration and analysis of genetic stability of cell-culture-derived engineered SARS-CoV-2 mutants showed that L50F rescued the fitness cost conferred by A173V. In the concentration–response experiments, A173V was the main driver of resistance to boceprevir and nirmatrelvir. Structural analysis of Mpro suggested that A173V can cause resistance by making boceprevir and nirmatrelvir binding less favorable. This study contributes to a comprehensive overview of the resistance profile of the first-in-line COVID-19 treatment nirmatrelvir and can thus inform population monitoring and contribute to pandemic preparedness
    corecore