9 research outputs found

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides

    Inhibition of duck hepatitis B virus replication by 2',3'-Dideoxy-3'-Fluoroguanosine in vitro and in vivo

    No full text
    The antiviral activity of 2',3'-dideoxy-3'-fluoroguanosine (FdG) or its triphosphate was evaluated in the duck hepatitis B virus (DHBV) system in vitro and in vivo. In primary DHBV-infected hepatocytes FdG results in a dose-dependent inhibition of viral replication with a nearly complete inhibition at a concentration of 1 microM. Also in vivo, FdG treatment of DHBV-infected ducklings reduces DHBV DNA replication by more than 90%. These data demonstrate that FdG is a strong inhibitor of DHBV replication in vitro and in vivo
    corecore