4 research outputs found
Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn plus Cd exposures
WOS: 000266507600003PubMed ID: 19058294We investigated the effects of Zn, Cd and a Zn + Cd mixture on antioxidant parameters and metal accumulation in Oreochromis niloticus. Fish were exposed to 0.5 and 5.0 mg l(-1) Zn, 0.1 and 1.0 mg l(-1) Cd, and 0.5 mgl(-1) Zn + 0.1 mg l(-1) Cd and 5.0 mg l(-1) Zn + 1.0 mg l(-1) Cd mixtures for 7 and 28 days to determine Zn and Cd accumulation, reduced glutathione (GSH) level and glucose-6-phosphate dehydrogenase (G6PD) activity in gill and liver. There was increasing accumulation of the metals in the tissues with increasing concentrations of metals in the exposure medium and with increasing duration of exposure (except at the lower concentration of Zn). Concentration of metals in the tissues of fish exposed to the Zn + Cd combination were significantly lower than in fish exposed to the single metal. The highest metal accumulation was observed in the liver. Exposure to the heavy metals affected the antioxidant parameters in the tissues, with both GSH level and G6PD activity in the gill and liver being increased under Zn, Cd and Zn + Cd exposures, especially in their higher concentrations. These increases in the antioxidant responses were higher with the Cd alone, and in combination with Zn, than with Zn alone. Furthermore, GSH level and G6PD activity increased with increasing exposure period only for Cd alone, and in Cd combination with Zn. The results indicate that O. niloticus resisted oxidative stress induced by heavy metal exposure by antioxidant mechanisms. Copyright (C) 2008 John Wiley & Sons, Ltd
A Multicenter Longitudinal MRI Study Assessing LeMan-PV Software Accuracy in the Detection of White Matter Lesions in Multiple Sclerosis Patients.
Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking.
To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting.
Retrospective, longitudinal.
A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males.
Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T.
The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T.
Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers.
The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10 <sup>-20</sup> , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10 <sup>-12</sup> , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03).
In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow.
4 TECHNICAL EFFICACY: Stage 2