2,577 research outputs found

    The primary photochemical processes in bacteriorhodopsin

    Get PDF

    Spatial Resonator Solitons

    Full text link
    Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.Comment: 15 pages, 32 figure

    Structure of the cell envelope of Halobacterium halobium

    Get PDF
    The structure of the isolated cell envelope of Halobacterium halobium is studied by X-ray diffraction, electron microscopy, and biochemical analysis. The envelope consists of the cell membrane and two layers of protein outside. The outer layer of protein shows a regular arrangement of the protein or glycoprotein particles and is therefore identified as the cell wall. Just outside the cell membrane is a 20 A-thick layer of protein. It is a third structure in the envelope, the function of which may be distinct from that of the cell membrane and the cell wall. This inner layer of protein is separated from the outer protein layer by a 65 Å-wide space which has an electron density very close to that of the suspending medium, and which can be etched after freeze-fracture. The space is tentatively identified as the periplasmic space. At NaCl concentrations below 2.0 M, both protein layers of the envelope disintegrate. Gel filtration and analytical ultracentrifugation of the soluble components from the two protein layers reveal two major bands of protein with apparent mol wt of ~16,000 and 21,000. At the same time, the cell membrane stays essentially intact as long as the Mg++ concentration is kept at ≥ 20 mM. The cell membrane breaks into small fragments when treated with 0.1 M NaCl and EDTA, or with distilled water, and some soluble proteins, including flavins and cytochromes, are released. The cell membrane apparently has an asymmetric core of the lipid bilayer

    Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin

    Get PDF
    The first steps in the photochemistry of bacteriorhodopsin (BR) are investigated with light pulses of 160 fs duration. Four samples are studied: (i) the purple membrane, (ii) deuterated purple membrane, (iii) BR trimers and (iv) BR monomers. In all samples the first intermediate J is formed within 430±50 fs. No isotope effect is observed in the formation of J upon deuteration, in contrast to previous reports with much higher excitation energies. Thus proton movement to or from the retinal Schiff's base is not relevant during the first step. Comparing the data for trimeric and monomeric BR suggests an upper limit of 50 fs for the transfer of excitation energy from the excitonically coupled trimer to a single retinal chromophore

    Energy transfer from retinal to amino acids — a time-resolved study of the ultraviolet emission of bacteriorhodopsin

    Get PDF
    Two-step excitation of retinal in bacteriorhodopsin by visible light is followed by an energy transfer to amino acids that is seen as fluorescent emission around 350 nm. The fluorescence spectrum obtained after two-step excitation (2 × 527 nm) differs from the fluorescence spectrum obtained after one-step ultraviolet excitation (263.5 nm) by a strongly quenched emission with a fluorescence lifetime of 10 ± 5 ps and a smaller spectral width. The two-step absorption process presumably selects tryptophan residues which strongly couple to the retinal chromophore

    PLoS One

    Get PDF

    Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy

    Get PDF
    The photodynamics of bacteriorhodopsin were studied by transient absorption and gain measurements after excitation with femtosecond pulses at 620 nm. With probing pulses at longer wavelengths (λ > 770 nm) the previously reported formation of the J intermediate (with a time constant of 500±100 fs) was confirmed. With probing pulses around 700 nm, a faster process with a relaxation time of 200±70 fs was observed. The data analysis strongly suggests that this kinetic constant describes the reactive motion of the polyatomic molecule on its excited-state potential energy surface, i.e. one observes directly the incipient isomerization of the retinal molecule. The minimum of the S1 potential energy surface reached in 200 fs lies approximately 13300 cm−1 above the ground state of bacteriorhodopsin and from this minimum the intermediate J is formed with a time constant of 500 fs

    Early picosecond events in the photo cycle of Bacteriorhodopsin

    Get PDF
    The primary processes of the photochemical cycle of light-adapted bacteriorhodopsin (BR) were studied by various experimental techniques with a time resolution of 5 × 10-13 s. The following results were obtained. (a) After optical excitation the first excited singlet state S1 of bacteriorhodopsin is observed via its fluorescence and absorption properties. The population of the excited singlet state decays with a lifetime τ1 of ~0.7 ps (430 ± 50 fs) (52). (b) With the same time constant the first ground-state intermediate J builds up. Its absorption spectrum is red-shifted relative to the spectrum of BR by ~30 nm. (c) The second photoproduct K, which appears with a time constant of τ2 = 5 ps shows a red-shift of 20 nm, relative to the peak of BR. Its absorption remains constant for the observation time of 300 ps. (d) Upon suspending bacteriorhodopsin in D2O and deuterating the retinal Schiff base at its nitrogen (lysine 216), the same photoproducts J and K are observed. The relaxation time constants τ1 and τ2 remain unchanged upon deuteration within the experimental accuracy of 20%

    Subpicosecond emission studies of bacterial reaction centers

    Get PDF
    The spontaneous emission of reaction centers from native and mutated Rhodobacter sphaeroides and from wild type Chloroflexus aurantiacus is investigated by fluorescence up-conversion with high temporal resolution. The time constant of 0.9 ps previously observed in transient absorption experiments on wild type reaction centers of Rhodobacter sphaeroides does not appear in the emission experiment. However, all investigated reaction centers display a biexponential decay of the emission with time constants in the 2 ps to 25 ps range. The experimental results are discussed within the frame of different reaction models including a possible sample heterogeneity or a transient electron transfer to the inactive pigment branch
    • …
    corecore