467 research outputs found

    Constraints on a Parity-Conserving/Time-Reversal-Non-Conserving Interaction

    Get PDF
    Time-Reversal-Invariance non-conservation has now been unequivocally demonstrated in a direct measurement at CPLEAR. What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance belong to two classes: searches for parity violating (P-odd)/time-reversal-invariance-odd (T-odd) interactions, and for P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron (with a present upper limit of 6 x 10^-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is less than 10^-4 times the weak interaction strength. Experimental limits on a P-even/T-odd interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged rho-meson exchange and A_1 meson exchange can lead to a P-even/T-odd interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which will possibly be comparable. All other experiments, like gamma decay experiments, detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order of magnitude less sensitive.Comment: 15 pages LaTeX, including 5 PostScript figures. Uses ijmpe1.sty. To appear in International Journal of Modern Physics E (IJMPE). Slight change in short abstrac

    Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    Full text link
    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.Comment: 30 pages, 12 figure

    Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments

    Get PDF
    We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarious under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of 199^{199}Hg are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.Comment: 43 pages, 9 figure

    Towards a knowledge-rich learning environment in preparatory secondary education

    Get PDF
    In this case study a novel educational programme for students in preparatory vocational education was studied. The research questions were: (1) Which teaching/learning processes occur in a simulated workplace using the concept of a knowledge-rich workplace? (2) What is the role of models and modelling in the teaching/learning processes? The curriculum project consisted of design and construction tasks. The students were collaboratively involved in the process of designing a tricycle for a real customer. This real-life activity creates opportunities for students to develop and use models, which can be used in more than in one context. The case study explored how the teachers deal with the students' explicit and implicit need for knowledge and skills. The main findings are that teachers more often provide this knowledge, rather than guide the students in reconstructing it, and towards the end of the project, knowledge tended to remain situated

    Model Calculations for the Two-Fragment Electro-Disintegration of 4^4He

    Get PDF
    Differential cross sections for the electro-disintegration process e+4He⟶3H+p+eâ€Če + {^4He} \longrightarrow {^3H}+ p + e' are calculated, using a model in which the final state interaction is included by means of a nucleon-nucleus (3+1) potential constructed via Marchenko inversion. The required bound-state wave functions are calculated within the integrodifferential equation approach (IDEA). In our model the important condition that the initial bound state and the final scattering state are orthogonal is fulfilled. The sensitivity of the cross section to the input p3Hp{^3H} interaction in certain kinematical regions is investigated. The approach adopted could be useful in reactions involving few cluster systems where effective interactions are not well known and exact methods are presently unavailable. Although, our Plane-Wave Impulse Approximation results exhibit, similarly to other calculations, a dip in the five-fold differential cross-section around a missing momentum of ∌450MeV/c\sim 450 MeV/c, it is argued that this is an artifact of the omission of re-scattering four-nucleon processes.Comment: 16 pages, 6 figures, accepted for publication by Phys.Rev.

    Qweak: A Precision Measurement of the Proton's Weak Charge

    Full text link
    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q2Q^2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Qwp=1−4sin⁡2ξwQ_w^p = 1-4 \sin^2 \theta_w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003 proceeding
    • 

    corecore